

About the Author

Robin Nixon is a prolific author on programming and web development (as well as psychology and motivation), whose books have been translated into numerous foreign languages—frequently topping the U.S. and international computer book charts. He has worked with computers and technology all of his life, and began writing about the subject about 35 years ago.

He has authored hundreds of articles, and over two dozen books, and is a popular video and online instructor, with thousands of students taking his courses. Robin is also an accomplished programmer, developer, and entrepreneur, with several successful Internet startups to his name, from which he has learned a wealth of programming hints and tips, which he enjoys passing on in his expanding range of web development books, including the following titles:

 • CSS & CSS3: 20 Lessons to Successful Web Development (McGraw-Hill Education, 2015)

 • JavaScript: 20 Lessons to Successful Web Development (McGraw-Hill Education, 2015)

 • PHP: 20 Lessons to Successful Web Development (McGraw-Hill Education, 2015)

 • Learning PHP, MySQL, JavaScript, CSS & HTML5 (O’Reilly, 2014)

 • Web Developer’s Cookbook (McGraw-Hill Education, 2012)

 • HTML5 for iOS and Android (McGraw-Hill Education, 2010)

About the Technical Editor

Albert Wiersch has been writing software since the Commodore VIC-20 and Commodore 64 days in the early 1980s. He holds a Bachelor of Science degree in Computer Science Engineering and an MBA from the University of Texas at Arlington. Albert currently develops and sells software that helps web developers, educators, students, businesses, and government agencies check their HTML and CSS documents and their websites for quality problems, including many SEO (search engine optimization), mobility, and accessibility issues, with discounts made available to students. His web site is at HTMLValidator.com.

[image: Images]

Copyright © 2015 by McGraw-Hill Education. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

ISBN: 978-0-07-183768-2
MHID: 0-07-183768-X

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-184155-9, MHID: 0-07-184155-5.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions or for use in corporate training programs. To contact a representative, please visit the Contact Us page at www.mhprofessional.com.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the possibility of human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill Education’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill Education and its licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill Education nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill Education has no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill Education and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

To Julie

Contents at a Glance

PART I Basic HTML

 1 An Introduction to HTML

 2 The Layout of an HTML Document

 3 The HTML Document Body

 4 Fonts, Colors, and Images

 5 Creating Lists and Tables

 6 Links, Forms, and Frames

 7 Using the Remaining HTML4 Tags

PART II HTML5 and the Canvas

 8 What’s New in HTML5

 9 Accessing the Canvas

 10 Creating Rectangles, Fills, Gradients, and Patterns

 11 Writing Text to the Canvas

 12 Drawing Lines, Paths, and Curves

 13 Manipulating Images, Shadows, and Pixels

 14 Compositing, Transparency, and Transformations

PART III Advanced HTML5

 15 Supporting Geolocation

 16 Building Advanced Forms

 17 Implementing Local Storage and Cross-Document Messaging

 18 Playing Audio

 19 Displaying Video

 20 Working with Microdata, Web Workers, and Web Applications

 A Answers to the Self-Test Questions

 Index

Contents

 Acknowledgments

 Introduction

PART I Basic HTML

 LESSON 1 An Introduction to HTML

 What Is HTML?

 HTTP and HTML Basics

 The Request/Response Sequence

 The Difference Between Get and Post Requests

 HTML Tags

 Tag Attributes

 Summary

 Self-Test Questions

 LESSON 2 The Layout of an HTML Document

 The <!DOCTYPE> Declaration

 Internet Explorer Tweak for Local Documents

 The <html> Tag

 The <head> Tag

 Creating a Document Title

 Including Style Sheets

 Incorporating JavaScript

 Passing Metadata

 The <body> Tag

 Summary

 Self-Test Questions

 LESSON 3 The HTML Document Body

 Inserting Comments

 The HTML 4.01 Tags

 The <div> and Tags

 Headings

 Paragraphs

 Line Breaks

 Text Emphasis

 Summary

 Self-Test Questions

 LESSON 4 Fonts, Colors, and Images

 Changing Font Face and Color

 …

 …

 …

 <basefont>

 <body bgcolor=′…′>

 The Named Colors

 Coloring by Numbers

 Font Faces

 Displaying Images

 Summary

 Self-Test Questions

 LESSON 5 Creating Lists and Tables

 Building Lists

 Overriding the Defaults

 Definition Lists

 Creating Tables

 Table Rows and Columns

 Extending Rows and Columns

 Summary

 Self-Test Questions

 LESSON 6 Links, Forms, and Frames

 Using Hyperlinks

 The Query String

 Relative URLs

 Creating Links

 Building Forms

 The <input> Tag

 The <textarea> Tag

 The <select> Tag

 The <button> Tag

 The <label> Tag

 Frames and Iframes

 Summary

 Self-Test Questions

 LESSON 7 Using the Remaining HTML4 Tags

 Conditional HTML for Internet Explorer

 Simple Comparisons

 Higher or Lower Values

 The Not Operator

 The Mark of the Web

 <abbr> … </abbr>

 <acronym> … </acronym> (Obsolete)

 <address> … </address>

 <applet> … </applet> (Obsolete)

 <area>

 <base>

 <basefont> (Obsolete)

 <bdo> … </bdo>

 <big> … </big> (Obsolete) and <small> … </small>

 <blockquote> … </blockquote>

 <center> … </center> (Obsolete)

 <cite> … </cite>

 <code> … </code>

 <col> and <colgroup>

 …

 <fieldset> … </fieldset>

 … (Obsolete)

 <frameset> (Obsolete)

 <hr>

 <iframe> … </iframe>

 <isindex> … </isindex> (Obsolete)

 <menu> … </menu> (Reserved)

 <optgroup> … </optgroup>

 _… and […]

 Summary

 Self-Test Questions

PART II HTML5 and the Canvas

 LESSON 8 What’s New in HTML5

 The Canvas

 Geolocation

 Forms

 Local Storage

 Audio and Video

 The <embed> Tag

 Microdata

 Web Workers

 Web Applications

 Still to Come

 Summary

 Self-Test Questions

 LESSON 9 Accessing the Canvas

 An Ultra-Crash Course in JavaScript

 Accessing Form Elements from JavaScript

 Using the getElementById() Function

 The Simpler O() Function

 The Partner S() Function

 The <canvas> Tag

 Accessing the Canvas with JavaScript

 Converting a Canvas to an Image

 Summary

 Self-Test Questions

 LESSON 10 Creating Rectangles, Fills, Gradients, and Patterns

 Drawing Rectangles

 The fillRect() Function

 The fillStyle Property

 The clearRect() Function

 The strokeRect() Function

 Creating Gradients

 The createLinearGradient() Function

 The createRadialGradient() Function

 The addColorStop() Function

 Using Patterns

 The createPattern() Function

 Summary

 Self-Test Questions

 LESSON 11 Writing Text to the Canvas

 Writing Text

 The font Property

 The strokeText() Function

 The textAlign Property

 The textBaseline Property

 The fillText() Function

 Determining Text Width

 Summary

 Self-Test Questions

 LESSON 12 Drawing Lines, Paths, and Curves

 Drawing Lines

 The lineWidth Property

 The lineCap Property

 The lineJoin Property

 The miterLimit Property

 Drawing with Paths

 The beginPath() and closePath() Functions

 The moveTo() and lineTo() Functions

 The stroke() Function

 The rect() Function

 The fill() Function

 The clip() Function

 The isPointInPath() Function

 Creating Curves

 The arc() Function

 The arcTo() Function

 The quadraticCurveTo() Function

 The bezierCurveTo() Function

 Summary

 Self-Test Questions

 LESSON 13 Manipulating Images, Shadows, and Pixels

 Using Images

 The drawImage() Function

 Adding Shadows

 Pixel Editing

 The getImageData() Function

 The data[] Array

 The putImageData() Function

 The createImageData() Function

 Summary

 Self-Test Questions

 LESSON 14 Compositing, Transparency, and Transformations

 Compositing and Transparency

 The globalCompositeOperation Property

 The globalAlpha Property

 Using Transformations

 The scale() Function

 The save() and restore() Functions

 The rotate() Function

 The translate() Function

 The transform() Function

 The setTransform() Function

 Summary

 Self-Test Questions

PART III Advanced HTML

 LESSON 15 Supporting Geolocation

 Accessing Geolocation with JavaScript

 The geolocation Property

 The getCurrentPosition() Function

 In the Real World

 The GPS Service

 Other Location Methods

 Summary

 Self-Test Questions

 LESSON 16 Building Advanced Forms

 New Form Attributes

 The autocomplete Attribute

 The autofocus Attribute

 The form Attribute

 Form Overrides

 The formaction Attribute

 The formenctype Attribute

 The formmethod Attribute

 The formnovalidate Attribute

 The formtarget Attribute

 The height and width Attributes

 The list Attribute and <datalist> and <option> Tags

 The min and max Attributes

 The multiple Attribute

 The novalidate and formnovalidate Attributes

 The pattern Attribute

 The placeholder Attribute

 The required Attribute

 The step Attribute

 New Form Input Types

 The color Input Type

 Date and Time Pickers

 The date Input Type

 The month Input Type

 The time Input Type

 The week Input Type

 The datetime Input Type

 The datetime-local Input Type

 The email Input Type

 The number Input Type

 The range Input Type

 The search Input Type

 The tel Input Type

 The url Input Type

 Summary

 Self-Test Questions

 LESSON 17 Implementing Local Storage and Cross-Document Messaging

 Using Local Storage

 Storing and Retrieving Local Data

 Removing and Clearing Local Data

 Cross-Document Messaging

 Summary

 Self-Test Questions

 LESSON 18 Playing Audio

 Understanding Codecs

 The <audio> and <source> Tags

 The <audio> and <source> Tag Attributes

 Supporting Older Browsers

 Summary

 Self-Test Questions

 LESSON 19 Displaying Video

 The Video Codecs

 The <video> and <source> Tags

 The <video> and <source> Tag Attributes

 Summary

 Self-Test Questions

 LESSON 20 Working with Microdata, Web Workers, and Web Applications

 Microdata

 Web Workers

 Offline Web Applications

 Drag and Drop

 Other HTML5 Tags

 Summary

 Self-Test Questions

 APPENDIX Answers to the Self-Test Questions

 Lesson 1 Answers

 Lesson 2 Answers

 Lesson 3 Answers

 Lesson 4 Answers

 Lesson 5 Answers

 Lesson 6 Answers

 Lesson 7 Answers

 Lesson 8 Answers

 Lesson 9 Answers

 Lesson 10 Answers

 Lesson 11 Answers

 Lesson 12 Answers

 Lesson 13 Answers

 Lesson 14 Answers

 Lesson 15 Answers

 Lesson 16 Answers

 Lesson 17 Answers

 Lesson 18 Answers

 Lesson 19 Answers

 Lesson 20 Answers

 Index

Acknowledgments

Once again I would like to thank the amazing team at McGraw-Hill Education, with whom it is always a real pleasure to work on new book projects. In particular I would like to thank my Sponsoring Editor Brandi Shailer, Amanda Russell for overseeing the project’s development, Editorial Supervisor Jody McKenzie, Production Supervisor Jean Bodeaux, Copy Editor Margaret Berson, and Jeff Weeks for the excellent cover design. Thanks also goes again to Albert Wiersch (whom I have had the pleasure of working with on a number of occasions) for his meticulous eye for detail during technical review.

Introduction

Why This Book?

The concept for this book grew out of Robin’s extremely popular online courses in which thousands of students are enrolled. From their feedback, it became evident that the reason for this popularity was that students love the way the material is broken up into easy-to-digest lessons, each of which can be completed in an hour or less. They also like the no-nonsense, jargon-free, and friendly writing style.

Now, working together, Robin and McGraw-Hill Education have further revised, updated, and developed his HTML5 course into this book, which not only will teach you everything you need to learn in 20 lessons (of less than an hour each), but it also includes an average 15-minute detailed video walkthrough for each lesson—almost five hours of footage in total. Watch the videos after reading the lesson to reinforce key concepts, or use the video as a primer to working through each print lesson. Together, the book and videos make learning HTML5 easier than it has ever been, and they are the ideal way for you to add HTML5 skills to your web development toolkit.

[image: Images]

 Access the videos by going to mhprofessional.com/nixonhtml5/.

Who Should Read This Book

Each chapter is laid out as a lesson in a straightforward and logical manner, with plenty of examples written using simple and clear HTML. Before moving on to each subsequent lesson, you have the opportunity to test your new knowledge with a set of 10 questions about what you have just learned. You can also work along with every lesson by watching its accompanying video tutorial.

Even if you don’t already know the previous version of HTML (version 4.1), you will still learn quickly, because the first part of the book contains a comprehensive primer—great for beginners, or useful for revising before moving on to the new features.

To save you typing them in, all the example files from the book are saved in a freely downloadable zip file available at the companion website: 20lessons.com.

What This Book Covers

This book covers every aspect of HTML and HTML5, starting with how to lay out an HTML document; handling fonts, colors, and images; creating lists and tables; and building forms. Then, after teaching some elementary JavaScript, it explains how to use the HTML5 canvas as a drawing tool, shows how you can access a user’s geolocation information, presents the latest updates to web forms, reveals how to make use of local storage on the user’s device and, after illustrating how easy it now is to add audio and video to your pages, also details how to make offline web apps, and run background JavaScript tasks.

How to Use This Book

This book has been written in a logical order so that each lesson builds on information learned in the previous ones. If you have never used HTML before, you should begin at Lesson 1 and then work sequentially through the book, proceeding to the next lesson only when you can correctly answer the self-test questions in the previous one.

If you already use HTML4.1, you can jump right into the HTML5 section, but I recommend you at least browse through the earlier lessons to refresh your memory of all the available features, many of which have been updated in HTML5.

How Is This Book Organized?

Although this book has three parts, they consist of just two approaches. The first deals with teaching all the HTML4 elements and how they go together to make up an HTML document, while the second explains the enhancements that have been added to HTML5.

In Part I, “Basic HTML,” the lessons include: An Introduction to HTML4; the Layout of an HTML Document; the HTML Document Body; Fonts, Colors, and Images; Creating Lists and Tables; Links, Forms, and Frames; and Using the Remaining HTML4 Tags.

Part II, “HTML5 and the Canvas,” includes these lessons: What’s New in HTML5; Accessing the Canvas; Creating Rectangles, Fills, Gradients, and Patterns; Writing Text to the Canvas; Drawing Lines, Paths, and Curves; Manipulating Images, Shadows, and Pixels; Compositing, Transparency, and Transformations.

Part III, “Advanced HTML5,” includes these lessons: Supporting Geolocation; Building Advanced Forms; Implementing Local Storage and Cross-document Messaging; Playing Audio; Displaying Video; and Working with Microdata, Web Workers, and Web Applications.

The Appendix lists all the answers to the self-test questions in each chapter.

PART I

Basic HTML

[image: Image]

[image: Images]

An Introduction to HTML

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

In his famous play for radio, Under Milk Wood, the poet Dylan Thomas chose to start with the words “To begin at the beginning,” and that seems also the appropriate place to start this book on HTML5, because many of you will be new to HTML, while others will be seasoned professionals who wish to add the new skills of HTML5 to your toolkit.

If you are new to web development, simply work your way through the entire book, or if you already use HTML, I still recommend that you browse through these early lessons as a refresher before moving on to the HTML5 elements (often called tags). So let’s start at the beginning and look at what HTML is all about.

Each lesson includes examples and screen grabs to illustrate the techniques being explained, and you can download the example files from the companion website, at 20lessons.com. There is a .zip archive file downloadable from the front page in which each lesson has its own folder, within which you will find the example files and associated content. For example, the examples from this lesson are all in the lesson01 folder.

What Is HTML?

HTML stands for HyperText Markup Language, and it was invented by Sir Timothy Berners-Lee in the early 1990s to solve the problem of quickly and efficiently distributing documents between scientists around the world who were working with experimenters at CERN (the European Laboratory for Particle Physics, where the Large Hadron Collider is now also situated).

The Internet was already in place and there were tens of thousands of computers connected to each other using it, but there was no easy means of publishing content for all to see, and in which references to other documents could be easily followed. So Berners-Lee created a hyperlinking framework he called the Hyper Text Transfer Protocol, or HTTP (the same set of letters at the front of a web address). He also created a language to use this protocol, which he called HTML (for Hyper Text Markup Language). To utilize both these new inventions, he also wrote the world’s first web browser, of which Figure 1-1 is a screenshot.

[image: Images]

FIGURE 1-1 Berners-Lee’s original NextEditor browser

This was a remarkable invention and was widely hailed in the computer press of the time as heralding a new age of communication. Until then the best connectivity computer users had experienced was dialing in to a local bulletin board, usually with only one, or at the most just a few, phone lines attached. You could then upload or download files and read and leave messages, but then you had to log off again to allow other people to take your place. Occasionally these bulletin boards would swap messages every few days with other boards, so users could interact with people further away, but only with a huge delay.

But right away HTML changed everything because now there was a way for all these bulletin boards and, in fact, any computers to stay in touch with each other, and documents could be stored in a multitude of places, which now were only ever a click away. People all over the world could connect to a local Internet host and immediately be in touch with any other person logged in to any other web-connected computer. It’s hard to feel that way about it now that we’ve had the internet for so long, but at the time it was revolutionary, and within the course of a few years, there were three major graphical browsers and more than five million Internet users—while today that has mushroomed into over two billion people who regularly use the Web!

HTTP and HTML Basics

Let’s look more closely at these two acronyms, starting with HTTP, which is the communication standard used for controlling the requests and responses that occur between a web browser running on your computer and a web server, and stands for HyperText Transfer Protocol.

The job of the web server is to accept a request from a client such as a web browser and then to reply to it in the most meaningful way it can, generally (as far as you are concerned) by simply returning the contents of a requested document, but in the process many other requests and responses also take place. This returning of a web page is called serving, which is why the web server is so named.

In between a client and server there can be a multitude of other computers and devices such as routers, gateways, and proxies. A web router chooses the best route to use in order to transfer data as fast as possible between the client and server. Gateways are nodes on the edge of one network that act as a connection from it to another, and proxies support indirect connections by acting as if they are the destination (or server), and then fetching the data you request and returning it to you, often employing a cache in which commonly requested documents are stored to save fetching them repeatedly.

These devices generally use an Internet protocol suite called TCP/IP for sending all this information flying across the Web, although there are other protocols that could be used to send HTML data (but which generally aren’t, and are therefore beyond the scope of this book).

Unlike the bulletin boards mentioned earlier, which supported only one user for each connected telephone line, web servers can use a single Internet connection to allow dozens, hundreds, or even thousands of simultaneous users at a time (depending on the power of the server).

Each web server spends much of its time simply listening for incoming requests. When one arrives, the server returns a response to confirm safe receipt of the request. It does this by sending a status message such as the following back to the client:

HTTP/1.1 200 OK

After this the server then sends its own message, which generally will be the document that was requested by the client, or it could be an error message if the document was not found.

If a document is returned, it can be in any format such as audio, video, images, or, most commonly, HTML, which consists of a simple text file within which the text is separated into different sections using a special set of markup tags, and which commonly will have the extension .htm or .html (although any extension is acceptable, as long as the server knows about it). To indicate that this type of file is being sent to the client, a web server will begin the document with a header telling the client about it, which will look like this:

Content-Type: text/html; charset=utf-8

Here the type of document is clearly specified to be HTML, and the character encoding used by the file is set to utf-8. But other header types could also be sent. For example, if the requested document has been moved to a new location, the web server might, instead, return the following headers:

[image: Images]

The first header tells the client that the document has moved and, instead of sending the document, the second line states where the document can now be found. Then it’s the client’s job to go off and request the document from the new location, which could be on the same or a different web server.

As you might imagine, there are many more different types of headers and information that can be sent back and forward between web servers and clients, of which the most common one you may encounter is the following:

HTTP/1.0 404 Not Found

After sending this header, the web server will then serve up a page explaining why the document could not be found. Because of the header response code of 404, these pages are often referred to as “404” pages.

The Request/Response Sequence

Following is an example of a web client talking to a web server from which it is requesting a file:

 1. You enter a URL such as http://myserver.com into your browser.

 2. Your browser looks up the IP address for myserver.com.

 3. Your browser issues a request for the home page from myserver.com.

 4. The request crosses the Internet and arrives at the myserver.com web server.

 5. The web server looks for the web page on its hard disk.

 6. The web page is retrieved by the server and returned to the browser.

 7. Your browser displays the web page.

In Step 1, the user enters a URL (Uniform Resource Locator), also known as a web address, into the browser’s input field. In this instance the root document (or home page) is being requested. Once the browser receives the request, then in Step 2, it makes a request to a set of servers on the Internet known as domain name servers. These translate sequences of letters such as myserver.com into an IP address, which consists of four groups of numbers separated by periods, like this: 74.125.224.72. In fact, all websites reside at IP addresses and you can demonstrate this by entering http://74.125.224.72 into a web browser, which should take you to Google’s website.

However, it’s difficult to remember such groups of numbers (and is even more so since IPV6 was introduced!). Therefore a system called DNS (Domain Name System) was invented, which simply stores domain names alongside their IP addresses, so that all you need to do is enter http://google.com, rather than an obscure set of numbers. Your browser then performs a DNS lookup, discovers that the IP this domain refers to is 74.125.224.72 and then initiates discussions directly with the web server at that address, as shown in Step 3.

In Step 4, the request your browser makes to the web server traverses the Internet and arrives at the destination server where, in Step 5, the page requested (in this instance the home page), is fetched from the server’s file system. In Step 6, the web server then transmits that page (preceded by a header) back to your web browser, which then displays the page in Step 7.

If the page was not found then in Step 6, an appropriate error header will be returned to the web browser. Also, web server scripting languages such as Perl and PHP may first manipulate the document and its contents by adding, removing, or changing contents according to any embedded scripting commands. Such documents are generally recognizable by their commonly used file extensions of .pl and .php.

The Difference Between Get and Post Requests

When requesting a document, it is possible for the web client (or browser) to request additional information or send information to the web server using either Get or Post requests. In a Get request, data is appended to the tail of a URL in the form of a query string, like this:

http://google.com/search?q=html5

This URL directly sends the search lookup string of html5 to the Google web servers by passing it as a string value in the argument q. When Google sees this request, it knows to return to you all the pages it thinks are relevant to the request. A longer such request might look like the following, in which the + symbol is used in place of spaces:

http://google.com/search?q=html5+course

Here the search string html5 course is passed to Google.

In a Post request, however, the additional information is passed from the client to the server in the headers, which is neater as far as the user goes, because it does not appear as part of the URL. Both get and post requests are discussed in detail later in this book.

HTML Tags

HTML documents are simply text files in which extra tags have been added within angle brackets, like this: <head>. So, for example, the tag <i> tells the web browser that all following text should be displayed using an italic font. And when a </i> is encountered, the preceding slash (/) character tells the browser to disable the italics. Therefore you frequently find HTML tags in pairs. For example, in the following line of HTML the word fox will appear in bold face, and dog in italics:

The fox jumps over the <i>dog</i>.

The result looks like this:

The fox jumps over the dog.

Tag Attributes

There is a whole lot more to HTML, though, than simply markup tags, because many of the tags either support or require the use of attributes. These are arguments that you pass alongside the tag to provide further information to the web browser. Generally an attribute consists of an attribute name followed by the = sign and then either single or double quotation marks enclosing a value.

For example, to create a hyperlink that the user can click to navigate to another document, you use the <a> tag (which stands for anchor), like this:

Visit Google

In a web browser this displays simply as:

Visit Google

[image: Images]

 In HTML tags you can generally use the single or double quotation marks interchangeably. Therefore is equivalent to . Wherever possible, though, I tend to use single quotes because they don’t require pressing the Shift key to type them in. Also there are sometimes occasions when you need two levels of nested quotes, where I would then choose double quotation marks for the outer string, and then apply single quotes within it, like this: <p style="font-family:′Times New Roman′;">.

In this element the href part (which stands for hypertext reference) is the attribute name, and the string http://google.com is the attribute value. The content between the opening and closing parts of this tag is the text Visit Google, which is simply displayed, and if default styling is applied, it will be shown in underlined blue (although this is easy to change with HTML or CSS—there’s more on this later in the book). The final closes the tag, ready for displaying in the browser.

There are several different types of attributes available, with different tags supporting different attributes, but to give you an overview, here are some of the more common ones you will encounter and use:

 • id This attribute is used to give a name to the object referred to by the tag so that it can be accessed using Cascading Style Sheets (CSS) or JavaScript. For example, <h1 id=′Header1′> provides the name or id of Header1 to the <h1> tag. Nothing happens to the contents of the tag (also known as an object) unless either CSS or JavaScript acts upon it to, for example, apply a particular font styling.

 • class This attribute lets you supply a group name that may apply to this and other objects. For example <p class=′indent′> applies the class name indent to the <p> tag, which might be used by a style sheet (with a suitable rule) to indent the first line of all objects using it.

 • style This attribute lets you apply a CSS style to an object by putting it within the quotation marks. For example, to apply the Arial font to a paragraph object, you could use the style attribute like this: <p style=′font-family:Arial′>.

 • title Any HTML element may be given a title, which most browsers will use to display as a tooltip when the mouse passes over it. For example, the following anchor displays a tooltip when the mouse passes over it: .

[image: Images]

 CSS stands for Cascading Style Sheets, a way to separate styling from the textual content of a web page, and JavaScript is a language used within the browser to achieve dynamic effects. Both of these are beyond the scope of this book, although occasionally snippets of their use may appear within it. For further information on all aspects of web development, I recommend my other books in the 20 Lessons to Successful Web Development series on CSS & CSS3, JavaScript, and PHP.

Summary

Now that you understand the basics of what HTML is about, in the next lesson I’ll introduce the different parts of an HTML document and their associated tags, such as the <html>, <head>, and <body> sections.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. What does the acronym HTML stand for?

 2. What is the difference between a web browser and a web server?

 3. What does the acronym HTTP stand for?

 4. What does a web proxy do?

 5. What file extension is often used by HTML documents?

 6. What is a 404 page more commonly known as?

 7. What is the difference between an IP address and a domain name?

 8. What is a query string?

 9. What is an HTML tag?

 10. What is a tag attribute?

[image: Images]

The Layout of an HTML Document

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

Don’t worry too much if Lesson 1 has left you scratching your head. If any of it is unclear right now, you will soon understand it as I take you section by section through a typical HTML document, and show you how it is laid out. If you’ve never used HTML before, I think you’ll be pleasantly surprised because it’s actually very straightforward.

In this lesson, I explain the different parts of an HTML document such as the <!DOCTYPE>, headers, scripts, CSS, meta tags, and the body. You will gain an understanding of how a document is put together and the things it may contain.

[image: Images]

 The examples from this and all the lessons in this book are freely downloadable at 20lessons.com.

The <!DOCTYPE> Declaration

All well-formatted HTML pages begin with a line that tells the browser information about the type of content to expect. This line consists of the <!DOCTYPE> declaration, along with some arguments if the version of HTML used is less than 5. There are a number of different arguments available for this declaration, which are listed at doctype.org and fully explained at wikipedia.org/wiki/Doctype. For example, a typical HTML 4 document will begin with the following line, which declares the document to be an HTML 4.01 transitional document:

[image: Images]

The tag can be spread over more than one line if it would wrap around in your HTML editor, as shown in the example. In HTML5 documents, the declaration has been simplified so that you only need to use the following line:

<!DOCTYPE html>

You are unlikely to need or very often see the former declaration because all the latest versions (and some older ones too) of all major browsers will render pages either in standards mode if they do not support HTML5, or using HTML5 styling if they do. Either way, you can probably ignore older-style <!DOCTYPE> declarations except when working with legacy pages that have not been updated.

Internet Explorer Tweak for Local Documents

Because Microsoft’s Internet Explorer places local documents in a trusted security zone, when you open a web page containing any active content such as JavaScript, you have to click a couple of different things to confirm that you wish to grant the web page access to your computer.

Obviously this is quite annoying when you are simply testing a document prior to uploading it to the Internet or using it in an app. Fortunately, there’s a simple solution, which is to tell IE that the document was saved from the Internet (even though it wasn’t), so that it then automatically assigns the correct security restrictions without being prompted. Therefore, you can add the following IE-only tag after the <!DOCTYPE> line if you will be accessing local documents using IE:

<!-- saved from url=(0014)about:internet -->

Don’t worry about leaving it in your documents because it is within comment tags (see the “Inserting Comments” section in Lesson 3), and so all browsers other than IE will ignore this line. You can even leave it in place when you upload documents to the Web, because that is the same restricted zone that the command is setting anyway. But, of course, if you won’t be using any active content in your web pages (such as JavaScript), or using the Internet Explorer browser, it can be omitted.

The <html> Tag

This tag notifies the web browser that a section of HTML follows. The end of the section should be noted with a matching </html> tag to indicate closure. Any content outside of these tags will be treated simply as text by most browsers unless it is within other tags or comments (explained in Lesson 3).

[image: Images]

 Many browsers are forgiving and do their best to display a page well, even with missing or misplaced <html> or other tags. But it’s best to get things in the right order to ensure that all browsers display your content properly.

Within a pair of <html> tags, there are generally two other tags used to contain the header and body text of the document. These are <head> and <body>.

The <head> Tag

The <head> tag indicates that the HTML within it and its closing </head> tag contains further information about the document such as its title, metadata, style sheets, and JavaScript. At its simplest the head section of an HTML document may look like this:

[image: Images]

Creating a Document Title

As you saw in the previous example, setting the title of your document is as easy as enclosing it within a pair of <title> and </title> tags. The title will appear at the top of the browser in the title bar and will be used by search engines such as Google for indexing your website. Therefore, make sure the title is clear, precise, succinct, and contains relevant keywords to the page’s contents. Therefore, if your website is about right-handed widgets (for example), a better title might be something like this:

[image: Images]

[image: Images]

 Using phrases such as “Welcome to…” was great in the 1990s when the Internet was new and there were few websites. But in the modern age when a user might browse dozens of sites in a single session, these phrases are superfluous “noise” that most people ignore. In my view it’s far better to get down to the point immediately, before the user surfs off to a competitor’s site.

Including Style Sheets

Cascading Style Sheets (CSS) are not really covered in this course, but you need to know about them. If you don’t already know, they are sets of rules used to describe the layout and presentation of an HTML document, which are kept separately from the content. This is done to free the content from its layout and presentation so that different designs can easily be swapped in according to need. For example, a web page can be restyled with basic CSS to make it more suitable for printing, and some CSS rules can be used to help page readers read out a web page to visually impaired people.

More than that, you can change the entire look and feel of a website by altering a few simple CSS rules; something that is very time-consuming to accomplish if the styling is embedded within the web page’s contents.

There are different ways of incorporating CSS rules in a document, including embedding them within the text, or as a set of rules within the <head> section of an HTML document using <style> and </style> tags, like the following (which tells the browser to display all Level 1 headings—explained later—in red):

[image: Images]

Or, by saving all the CSS rules in a separate document, you can simply include a single line in the <head> of a document to include them. The latter is the preferred method of most developers, and you perform it using the <link> tag, like this:

<link rel=′stylesheet′ href=′styles.css′ type=′text/css′>

[image: Images]

 Since this book only uses a little CSS in passing, it will not be discussed in further detail, but you may be interested in reading my book CSS & CSS3: 20 Lessons to Successful Web Development, for a comprehensive introduction.

Incorporating JavaScript

This course is also not about JavaScript, although some elements of HTML5 require the use of JavaScript. Generally JavaScript is included within a web page by either including a section within <script> and </script> tags, or by adding an src attribute to the <script> tag to load in an external file.

For example, the following HTML specifies a script that is embedded within <script> tags (the result of running this code is shown in Figure 2-1):

[image: Images]

[image: Images]

FIGURE 2-1 A JavaScript alert window

Like all JavaScript, the preceding example can be placed almost anywhere within an HTML document, but you will most often find scripts in the <head> section of web pages, so that they load in and execute before the body of a document. If scripts are longer than a few lines, they will often be saved as external files that are then loaded in as follows:

<script src=′ProgramCode.js′></script>

The file ProgramCode.js is then loaded in from the current folder and its contents are executed as if all its commands were contained within the <script> tags. However, the JavaScript examples in this course are short and for ease of comprehension are always inserted alongside the HTML elements upon which they act.

JavaScript <script> tags allow you to specify the type of script as being JavaScript (for example: <script type=′text/javascript′>), but all major browsers allow you to omit this and I generally do so to save on typing. However, if you find yourself with a strict program editor or your programming styles at your company require it, then you’ll need to use the full string, as you should when writing HTML4 documents, for which the type attribute is required.

You may also see instances of <script language=′javascript′> if you view the source of some websites, but this was deprecated in HTML4 and is now obsolete in HTML5, and should not be used.

Passing Metadata

It is possible to provide additional information to an HTML document that the browser can use (if it understands it). Such data is sent using the <meta> tag. For example, you can tell a browser to exchange the current page for another one after a set length of time, like this:

<meta http-equiv=′refresh′content=′10;url=http://othersite.com′>

This meta command uses the http-equiv attribute with the value of refresh to tell the browser that a refresh is being requested. The content attribute has the value 10; url=http://othersite.com, which states that after 10 seconds the web page at http://othersite.com should replace the current one. Note that this is an empty tag (known as a void element) that contains no content and does not make use of a </meta> tag to close it.

Other uses of the <meta> tag include setting the width of the document for portable browsing hardware such as phones and tablets. This is done using the viewport value, and a common width you see used is 960 pixels. However, such documents are not restricted to only devices of at least that width because all this setting does is say how many pixels of width your document uses. Devices of differing resolutions will then render at that width but then zoom in or out, or rescale as necessary to enable your pages to display at their best.

So, for example, to specify a document width of 960 pixels, you might use the following tag:

<meta name=′viewport′ content=′width=960′>

With both these tags applied, a head section of HTML might look like this:

[image: Images]

However, as a beginner, on the whole you will probably mostly use only the <title> tag in the <head> section until you become more proficient at HTML, with the possible exception of two other versions of the <meta> tag for declaring keywords and a description for a web page, like this:

[image: Images]

These used to be very important for search engine ranking, and while less so these days due to smarter web crawlers, they are used by some search engines and indexers, and may be worth including on your web pages.

[image: Images]

 The <meta> tag is an unusual use of HTML (particularly for newcomers) but you need to be aware of it even if you don’t use it, as it often crops up containing a variety of different metadata.

The <body> Tag

You place the contents of an HTML document inside a pair of <body> and </body> tags. Web browsers then know to display everything they find in there, and the HTML you need can be as simple as this:

[image: Images]

As you will learn in Lesson 3, there are dozens of tags you can use within the body of a document, but by default you can simply place some text and it will be displayed in your browser’s default text font and size.

Summary

When all the parts I have described so far are brought together, including only the document’s title in the <head> (without JavaScript or metadata, and so on), a basic HTML document might look something like this:

[image: Images]

As you can see, it’s quite simple really and nothing to be frightened of. Each section, such as <head> or <body>, is closed with a matching </head> or </body> tag, and the enclosing <html> tag is closed right at the document end with a </html> tag.

In the following lesson I’ll delve more deeply into the <body> tag and show you how to use the various tags it supports.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. What declaration should appear right at the start of every HTML5 document?

 2. Which tag is used to specify that it contains HTML contents?

 3. What is the purpose of the <head> tag?

 4. How do you title a document?

 5. Where in an HTML document should the <title> tag appear?

 6. How do you denote the body of an HTML document?

 7. Where is the place to put CSS (Cascading Style Sheet) rules?

 8. How else can you include a style sheet in an HTML document?

 9. How do you embed JavaScript into an HTML document?

 10. How can you run an external JavaScript file from an HTML document?

[image: Images]

The HTML Document Body

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

Having introduced you to HTML and explained the different sections it requires, in this lesson I start to look more closely at the body section of an HTML document, which resides within <body> and </body> tags.

The <body> section of HTML is where you place all the elements that the web browser should display. At its simplest you can place plain text in this section and the browser will display it for you. However, no matter how many spaces, paragraph returns, or other characters you place within this text, browsers will ignore them and just display the text in one long string. So let’s look at how you can format this text to start making it look much more interesting.

Inserting Comments

To start with, let’s kick off with comments, probably the simplest type of HTML formatting, and something you place in a document to be seen only in the source, and which is not displayed by the browser. To do this you place your comment between the opening <!-- and closing --> markers or tags.

Comments are useful for detailing the author of a document and explaining how a document develops. To allow this, comments may be as long as you like and include as many lines as you wish. They close only when the --> tag is encountered, so the following is an example of a legal comment string:

[image: Images]

You can also use comments to temporarily remove sections of HTML that you don’t want to display, perhaps because you are highly organized and have written something in advance of a product release, so that you only need to uncomment it on release day. Comments are also useful for hiding sections from displaying so you can concentrate on debugging only those sections that you may be having a problem with.

[image: Images]

 Although I have waited until this lesson to discuss comments, you should know that you can apply them to any section of HTML, not just the body of a document. This means you can comment out sections in the head or even an entire <html> … </html> section if you wish. Also, you should remember that comments may not contain pairs of hyphen characters within them, nor can they end with a hyphen, as this may confuse the browser’s HTML parser.

The HTML 4.01 Tags

HTML 4.01 (HTML4 for short) supports almost 100 different elements (also called tags), but since this is a book on HTML5, I will not go into all of them in detail. Rather, in this lesson I concentrate on some of the different types of HTML4 tags and how you use them, and then briefly list the less frequently used ones and the attributes they have.

This includes various text formatting tags, for headings, paragraphs, text emphasis, and lists. Then there are the tags for changing text and background colors and font faces, as well as tags for embedding media such as images, creating hyperlinks, building tables and forms, and much more. So you will get a good grounding in HTML4 before moving on to the new features in HTML5.

The <div> and Tags

The <div> and tags were created to help with combining elements into groups. Their main purpose is to enable the contained elements to be manipulated as a group from style sheets. The <div> tag creates what is called a block element in that by default its width stretches all the way to the browser’s right-hand edge, forcing any following elements onto the next line. Therefore all <div> elements have four sides and are rectangular.

On the other hand, the tag creates an inline element that flows with the text, and it is therefore particularly suited for applying styles to sections of text. Although this book doesn’t teach CSS, style sheets are inextricably entwined with HTML and so, from time to time, I may employ either <div> or tags with suitable CSS styling where standard HTML does not provide the solution required.

You use the tags as follows:

[image: Images]

The main practical difference between the two that you will usually notice is that <div> elements by default force a line break before and after them, whereas elements do not. You will see how to add CSS styles to them in the “Text Emphasis” section, a little further on.

[image: Images]

 Simply think of each of these two types of elements as invisible containers in which text and/or other elements are placed, and which can be styled with CSS. Remember that <div> elements are rectangular, while elements go with the flow of text, line by line along and down the screen.

Headings

Let’s now look at some of the commonly used tags, those for formatting text, starting with headings. To specify headings in HTML documents, you must enclose them in any one of six different pairs of tags, from <h1> to <h6>, and their counterpart closing tags </h1> to </h6>. The <h1> heading is the largest, and <h6> is the smallest. Headings are also generally formatted in bold to help them stand out from the body even more.

Here are examples of each heading type, and the result of using them is shown in Figure 3-1:

[image: Images]

[image: Images]

FIGURE 3-1 The six types of HTML headings

[image: Images]

 Interestingly, the fifth- and sixth-level headings are by default displayed smaller than standard body text. However, most writers will agree that if you need to go any deeper than four levels, you are probably overcomplicating the subject and should consider reworking your content. For this and the previously mentioned reason of small size, I rarely use <h5> and <h6>.

Once you have split a web document with suitable headings inserted in appropriate places using these tags, it is much easier for your readers to comprehend and quickly read it. This is because it is easier on the eye with more whitespace, and each separate topic has its own heading, making it easier to focus in on what interests the reader.

Paragraphs

Each of your paragraphs should be enclosed within <p> and </p> tags so that web browsers know how to handle them. By default it will ensure the correct spacing between each paragraph and, with the addition of CSS, you can further modify styling by, for example, indenting the first line of each, or by choosing ragged or full justification, and so on.

Here is an example of a simple paragraph taken from Matthew 7:7-8 in the Bible (I prefer to use the Bible, Shakespeare, Dickens, and so on, rather than using Lorem Ipsum text), and formatted as an HTML paragraph:

[image: Images]

This paragraph will display as a single line that wraps around only when the text encounters the edge of its containing element. So, for example, it might display like the following ragged justified text:

[image: Images]

Line Breaks

What a line break does is interrupt the default flow of text from left to right and then down to the next line (or right to left if that option has been enabled, either with CSS or by modifying the <html> tag like this: <html dir=′rtl′>), so that the next element displayed is forced to the start of the next line. Sometimes you have a reason for sending a line break to the browser before the end of a paragraph. This is done using the
 tag which, you will notice, is empty (void) and has no end tag.

[image: Images]

 Even though in HTML5 the value supplied to dir can be either uppercase (for example RTL) or lowercase (for example rtl), because XHTML doesn’t support uppercase, you should stick with the lowercase style so that your content can be easily repurposed as XHTML (such as in an RSS feed).

So, if you need to make sure some text (or any sequence of HTML elements) displays exactly the way you want, you can force its formatting, for example, as with the following reformatting of the quotation from Matthew:

[image: Images]

This HTML will display as follows—as long as its containing element is wide enough:

[image: Images]

Whatever is next in your HTML to be displayed, whether an image, a video, or some text, the
 will always force it down to continue on the next line. There is also a special case of this tag, which is used to clear any temporary left or right alignment. For example, it is possible to display an image with left alignment so that text flows down along its right-hand side (there’s more on how to do this later in the section “Displaying Images” in Lesson 4). But if you have insufficient text to fill in all the space to the right of the picture before the next paragraph or heading, then that would also appear beside it.

In such cases you can use the
 tag to clear any alignment and force further text (or other elements) to appear not just down a line, but under the image or other object around which the text has been flowing. There are three versions of the tag to do this, for clearing left alignment, right alignment, and all alignments respectively, as follows:

[image: Images]

[image: Images]

 The clear attribute is not part of HTML5 (even though your browser may still support it), and so you are recommended to create this type of alignment using CSS instead, since there is a good chance that this attribute will stop working sometime soon.

Text Emphasis

There are many different ways you can change the emphasis of text in HTML, each with an accompanying tag. For example you can bold, italicize, underline, and strike through text, and you can also display text in superscript or subscript.

Following are the most common HTML tags you will use for this, the results of using which you can see in Figure 3-2. Some of these tags are obsolete in HTML5, which means that they have been removed from HTML5. However, the practicality of billions of web pages already employing them means that support for them in browsers is unlikely to end, otherwise too many websites would break. Even so, you should avoid using obsolete elements in new documents.

[image: Images]

FIGURE 3-2 The text emphasis tags and how they display

…

Text within these tags will appear in bold face. This is the same as using the tag, but it is possible to style this tag differently than with CSS. HTML5 considers there to be a semantic difference between these tags, though, in that should be used only for formatting in bold.

<big> … </big> (Obsolete)

Text within these tags will be bigger than that outside. This tag is obsolete in HTML5.

<center> … </center> (Obsolete)

Text within these tags will appear centered. However, these tags are obsolete in HTML5 and you are recommended to use CSS in their place. Note how in Figure 3-2 you can see that by using this tag, if the text within it is not already at the start of a line, then a line break will automatically be issued first. A line break is also issued after closing this tag, so beware of adding one yourself, which would result in a double line break.

 …

Text within these tags will appear with a strikethrough line through it. This is the same as using the <s> and <strike> tags (although <strike> is obsolete in HTML5). It is possible to style this tag differently than <s> and <strike> with CSS. In HTML5 represents a removal from the document.

 …

Normally text within these tags is displayed in italics, and so it is the same as using <i>, but it is possible to style this tag differently than <i> using CSS. In HTML5, is meant for adding emphasis to text (it just happens to italicize by default).

<i> … </i>

Text within these tags will appear in italics. This is the same as using the tag, but it is possible to style this tag differently than with CSS. The <i> tag should be used only for italicizing in HTML5.

<s> … </s>

Text within these tags will appear with a strikethrough line through it. These tags were deprecated in HTML4 but restored in HTML5, and are the same as using <strike> (which is now obsolete in HTML5). The <s> tag is similar to the tag, but in HTML5 it is intended for indicating something that is no longer accurate or relevant.

<small> … </small>

Text within these tags will be shown smaller than that outside.

<strike> … </strike> (Obsolete)

The same as <s>, although it is obsolete in HTML5, and so either <s> or is recommended instead. It is possible to style this tag differently than <s> and using CSS.

 …

Normally text within these tags is displayed in bold face, and so it is the same as using , but it is possible to style this tag differently than using CSS. In HTML5 is intended for text that is especially important, such as a key point to learn.

_…

Text within these tags will appear subscripted.

[…]

Text within these tags will appear superscripted.

<u> … </u>

Text within these tags will appear underlined. This tag was deprecated in HTML4 but restored in HTML5, and is intended to represent text that should be stylistically different from normal text, such as misspelled words.

When you wish to create emphasis, it is often best to use CSS. One way is to add the CSS inline, as with the following example, which creates italic and strikethrough text:

[image: Images]

An even better way is to separate the styling from the content by creating a class containing a rule, and then applying the class. Doing so in detail is beyond the scope of this book, but the following snippet shows one way of doing this using a period symbol in front of the class names in the <style> section:

[image: Images]

Figure 3-3 shows the preceding example being displayed in a web browser.

[image: Images]

FIGURE 3-3 Using CSS to create text emphasis

Summary

Armed with the tags you have learned so far, you can already create some quite impressive HTML documents, but in the following lesson I add even more tools to your kit by showing how to change font face and color, and embed images in your documents.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. How can you place a comment in an HTML document?

 2. What is the difference between a <div> and a element?

 3. What are the six pairs of tags you can use to create different levels of headings?

 4. Which tags do you use to denote the start and end of a paragraph?

 5. How can you issue a line break in an HTML document?

 6. How can you format HTML text in bold without using CSS?

 7. Which HTML tag can be used for displaying italic text?

 8. What is one way to display text in italics with CSS?

 9. How can you make an element display as line-through using CSS?

 10. What does the term deprecated mean?

[image: Images]

Fonts, Colors, and Images

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

So far you have learned about the structure of an HTML document, and how to format and emphasize text to present it well.

In this lesson, I show you how to change the font face and size of any text, as well as how to add coloring to the text foreground or background, and how to load and display images in a document, including on-the-fly resizing.

Changing Font Face and Color

Even without using CSS, there are many ways you can use HTML to change the way a font displays by passing different attributes to the tag. However, the use of this tag (and another called <basefont>) has been deprecated in HTML4 and made obsolete in HTML5. This means that at some time in the future they could be removed entirely from HTML, but I seriously doubt this will ever happen since they are so widely used on billions of pages worldwide, which would all break if this happened. Nevertheless, you should avoid using them on any new web pages.

It’s true that CSS is a better way to manage colors, but this is a book on HTML, and so I will show you what you can achieve with it. Once you’ve mastered HTML, though, I strongly advise you to learn CSS if you haven’t already.

Anyway, let’s start off this lesson with the tag.

 …

The color of the text is changed to the value in the quotation marks. This value may be a color name (see the following section, “The Named Colors”) or a color number (see the “Coloring by Numbers” section). For example:

This is red text

 …

The font face of the text is changed to the value in the quotation marks. This value should be the name of a font available to the browser. If the font is not found, a replacement will be selected. For example:

This text is in the Arial font

 …

The font size of the text is changed to the value in the quotation marks. This should be a value between 1 and 7 (from smallest to largest size font, with a default of 3). The value may be preceded with a + or – symbol to indicate a relative rather than absolute change of size. For example:

This is font size 5

You may combine any or all of the color, face, and size attributes in a single tag, for example, like this:

[image: Images]

<basefont>

Additionally you can use the global tag <basefont>, which has the same attributes as the tag but is used to change the default font values for an entire document. In particular, if the size is changed, then any use of the tag with + or – values will change the font’s size relative to the value specified for the basefont.

[image: Images]

 Headings are not affected by the <basefont> tag, and on some browsers, tables do not use this tag’s values either.

<body bgcolor=′…′>

You can change the default background color of a web page by specifying your choice of color as an attribute to the <body> tag, like this, which sets it to cyan:

<body bgcolor=′cyan′>

The Named Colors

All browsers support 16 main color names for the color attribute values, including: aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white, and yellow.

Modern browsers support many more color names (up to 147), but those names are not part of the HTML standard. Among other options, you can often add the words dark or light before a color name, but do check that all browsers you intend to support work with these color names. Here are some examples:

[image: Images]

See Table 4-1 for the full list of color names supported by all web browsers (and their equivalent hex string values). If you need a wider choice of colors, you should really use hexadecimal color numbers, which allow very precise color selection, as explained in the following section.

TABLE 4-1 The 140 cross-browser color names and their hex values

[image: Images]

[image: Images]

Coloring by Numbers

Instead of providing color names to HTML tags, you can be much more precise by passing numeric values instead. To do this you start with a # symbol and follow it with six hexadecimal numbers consisting of three pairs, which represent the primary colors of red, green, and blue.

For example, numbers in hexadecimal go from 0 through to F, rather than the 0 to 9 we are used to in decimal notation. Therefore a single hexadecimal digit can represent any of 16 different values (instead of 10). This means that two hexadecimal digits together can represent 256 values (16 × 16, between 00 and FF), and therefore it is possible to create a color out of any one of 256 levels of red, 256 green, and 256 blue—over 16 million colors (256 × 256 × 256).

This is done by following the # symbol with six hexadecimal digits, like this, for example: #006699, which indicates a color consisting of 00 red, hexadecimal 66 (102 decimal) of green, and hexadecimal 99 (153 decimal) of blue. Therefore the value #000000 specifies the color black because it assigns values of 00 to red, 00 to green, and 00 to blue. On the other hand, a value of #FFFF00 specifies the color yellow because it assigns values of FF to red, FF to green, and 00 to blue (on a computer, combining red and green results in the color yellow).

For example, the following tag changes the font color to orange:

This is orange text

[image: Images]

 You may use either the lowercase letters a–f, or the uppercase A–F, or a combination in hexadecimal color values. Also, in some browsers, if you are prepared to sacrifice the availability of over 16 million possible colors for a more limiting 4,000 or so, you can use a single hexadecimal digit for each primary color in a value, rather than two of them, like this: #000, or #148. The former is the color black, while the latter is shorthand for the color #114488—only use this format if your web pages won’t be accessed with Internet Explorer. However, color values of either length (three or six hexadecimal digits) are accepted by CSS rules (as opposed to HTML) in all browsers.

Font Faces

There are a number of fonts available to a web browser, depending upon the availability of fonts in the underlying operating system. Therefore, when you choose a font name, you are permitted to select alternative, or second-best fonts, in order of preference so that a web page will degrade gracefully according to your font preferences.

For example, as a backup in cases where a computer may not have the Arial font installed, you might choose to ask the browser to choose the best sans-serif font it can find by using the following syntax:

[image: Images]

Following is a list of all the main fonts that are likely to be available on most PCs, Macs, Linux boxes or other modern computers, along with one or more suitable substitutes where the chosen font isn’t available. Simply enter the entire string as the value of the face attribute of a tag to select it.

 • "Arial, sans-serif"

 • "′Arial Black′, sans-serif"

 • "′Arial Narrow′, sans-serif"

 • "′Avant Garde′, sans-serif"

 • "Bookman, ′Bookman Old Style′, serif"

 • "′Century Gothic′, sans-serif"

 • "Copperplate, ′Copperplate Gothic Light′, serif"

 • "′Comic Sans MS′, cursive"

 • "Courier, monospace"

 • "′Courier New′, monospace"

 • "Garamond, serif"

 • "′Gill Sans′, ′Gill Sans MT′, sans-serif"

 • "Georgia, serif"

 • "Helvetica, sans-serif"

 • "Impact, fantasy"

 • "′Lucida Grande′, ′Lucida Sans Unicode′, sans-serif"

 • "′Lucida Console′, monospace"

 • "Palatino, ′Palatino Linotype′, serif"

 • "Tahoma, sans-serif"

 • "Times, serif"

 • "′Times New Roman′, serif"

 • "Trebuchet, sans-serif"

 • "Verdana, sans-serif"

For example, for the Lucida Grande font, enter the string shown, like this:

[image: Images]

Figure 4-1 shows how these font strings display on a standard Windows computer using Internet Explorer.

[image: Images]

FIGURE 4-1 A selection of fonts and how they display on Windows 7 in IE

[image: Images]

 The single quotation marks are required within the double quotes to enclose font face names that contain spaces in them.

You can also use these strings without the double quotes (but keeping the single ones) as part of CSS declarations for changing a font face, like this:

[image: Images]

Or, better still, employ a CSS class that you create in a separate CSS style sheet or within <style> … </style> tags in the <head> of your document. For more on using CSS, you may wish to refer to my book, CSS & CSS3: 20 Lessons to Successful Web Development.

Displaying Images

Images are easily displayed in a web page and various image types are supported, mainly including .jpg, .gif, and .png. Each of these has different features and drawbacks.

For example, .gif images can be animated, but display fewer colors; .jpg images display more colors but may employ a lossy compression technique that introduces distortions; while .png images offer the best of both worlds, but can be larger.

You include an image in your HTML using the tag (note that this void tag is empty and has no matching tag), accompanied by one or more of the following attributes:

 • src This value tells the browser where to fetch the image from. If it is preceded by the string http:// (or https:// on secure servers), then the image will be downloaded from the website at the domain following the http://. Otherwise the image is assumed to be on the current website (or on the local disc) and is loaded from the current folder there.

 • alt Some browsers do not display images, or their display may have been disabled, so you can use this attribute to provide alternate text describing the image. This is also useful in cases where an image is slow or fails to load, as shown by the fourth image in Figure 4-2, in which the alternate text is displayed due to the image not being found.

 • width and/or height By default web browsers will look up an image’s dimensions and display it using them. But sometimes you may wish to display an image using a different width and height, which you can specify using one or both of these attributes. If only one attribute is used, the browser will compute the other dimension such that the image will stay in proportion. Another reason to specify an image’s width and height is to ensure that page layout is correctly aligned even before the image is loaded. If you specify these values in advance, the browser will allocate the space required for the image right away.

 • border Using this attribute you can specify the width of border (if any) to apply to an image. It accepts the value 0 or any positive number. Unless this setting is modified by CSS, if an image has a border and is placed with an anchor, the border color will change when the mouse passes over it. The three images that could be loaded in Figure 4-2 have no border, a one-pixel border, and a five-pixel border respectively. This attribute is obsolete in HTML5 and CSS is recommended instead.

 • align With this attribute you can position an image vertically by aligning it within the current line using any of the values top, middle, bottom, absmiddle, or absbottom. You can also align it to the left or right of the current line using the values left or right. This attribute is obsolete in HTML5 and CSS is recommended instead.

[image: Images]

FIGURE 4-2 Four images displayed using the tag, with one missing

The lines of HTML used to create Figure 4-2 are as follows:

[image: Images]

In Lesson 3, I introduced the
 tag, which is used for creating a line break, and mentioned that it also had a secondary purpose, which is to clear left or right alignment. Well, here’s how that works.

Figure 4-3 shows an image being displayed using left alignment with some text flowing to its right. It was created with the following HTML:

[image: Images]

[image: Images]

[image: Images]

FIGURE 4-3 A left-aligned image with text flowing to the right

Disregarding (for now) the fact that the text butts right up against the image, it also seems rather messy because the second paragraph probably should begin under the image. To fix this the <br clear=′left′> tag is used (although clear=′all′ would also work in this instance) prior to closing the first paragraph, as follows, with the result shown in Figure 4-4:

[image: Images]

[image: Images]

[image: Images]

FIGURE 4-4 The left alignment is cleared before the start of the second paragraph.

Although better, this display could still do with a little more cleaning up, so in Figure 4-5 I have added a 1-pixel border to the image, a heading to the text, and created a 15-pixel blank margin to the right of the image using a CSS declaration, as follows:

<h1>All About Islands</h1>

[image: Images]

[image: Images]

[image: Images]

FIGURE 4-5 Now a border, heading, and margin have been added.

[image: Images]

 Ideally, the CSS styling should be removed from within the body of the web document and into an external style sheet using a class name, which can then be applied to any left-aligned object. Please refer to your favorite CSS book or website for full details on using CSS.

By default, images will line up next to each other unless you use CSS styling or tags such as
 to force a line break, or <p> to start a new paragraph. Text will also line up next to an image, but starting only at the bottom-most possible line, and then wrapping around to the next line. So use the align attribute to force a full left (or right) align to allow text to flow from the top-most position.

If you choose to right-align an image (or any element, in fact), things are just the same, except that text will flow to its left, and you should use either the clear=′right′ or clear=′all′ attributes of the
 tag if you wish to turn off the wrapping prior to reaching the bottom of the image.

Remember, though, that the clear attribute (like align) has been made obsolete in HTML5 and, even though it still works in all major browsers (for backward compatibility reasons), you should learn to use CSS to achieve the same effect for all new documents—because one day deprecated and obsolete attributes may be removed altogether, which will break pages that use these attributes.

Summary

Now that you have mastered managing fonts, colors, and images, in the next lesson I will turn to building lists and tables.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. What HTML tag is used to manipulate fonts?

 2. Which attribute affects the color of text?

 3. Which attribute changes the font face?

 4. Which attribute changes a font’s size?

 5. How can you change the background of a document without using CSS?

 6. What colors do the following hexadecimal number values represent: #FF0000, #FFFFFF, #888888?

 7. How can you change font face using CSS?

 8. Which HTML tag can you use to display images?

 9. How can you left-align an image without using CSS?

 10. What is the CSS way of left-aligning an element?

[image: Images]

Creating Lists and Tables

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

By now you should be really appreciating the power of HTML, and we’ve only covered a subsection of HTML 4.01, but bear with me if you are new to HTML, because you need this background in order to prepare you for all the goodies that have been added in HTML5.

And even if you are experienced with HTML, it may still be a good idea to continue browsing through these early lessons to give yourself a quick refresher on the subject.

Building Lists

HTML supports a wide variety of different list types, including bulleted, numbered, and definition lists. Numbered lists are known as ordered lists, and list items can be denoted with letters of the alphabet or roman numerals as well as with numbers, and bulleted lists can use squares, or filled or outlined circles.

Figure 5-1 shows every possible type of list, all on a single web page, including both the upper- and lowercase forms that are available.

[image: Images]

FIGURE 5-1 The eight different HTML list types

A typical ordered list can be created with HTML, such as the following:

[image: Images]

As you can see, lists are a little more complex than the tags we’ve used so far because they consist of more than one tag. To start with there are the enclosing and tags, which indicate that the content between the tags is a list. Then each item of the list is itself enclosed in and tags. The preceding example displays as the first list in row one of Figure 5-1.

An unordered (or bulleted list) using the default of filled circles could be created like this (which displays as the first list in row two of Figure 5-1):

[image: Images]

Lists may also contain sublists (and so on), like this:

[image: Images]

[image: Images]

In this example the sublist of Bramley, Cox, and Golden Delicious will appear with an open circle symbol. This is because the default order of rotation between bullets is filled circle (the outer list level), open circle, filled square, and then back to filled circle, and so on. In HTML these three shapes are referred to using the values disc, circle, and square.

Overriding the Defaults

You can obtain greater control over your lists by overriding the default values and specifying values of your own, out of the following attributes:

 • start By default ordered lists start with the number 1 and each additional item in the list is prefaced by the next number in sequence, but you can choose any other starting value, both positive and negative, or zero. This attribute is not used by unordered lists, which always display the same character before each item.

 • type Ordered lists preface digits before each list item by default, but you can change this behavior to displaying upper- or lowercase letters, or upper- or lowercase roman numerals by giving this attribute a value of one of the following: 1, A, a, I, or i, respectively. Unordered lists require any of three words as values for this attribute, out of disc, square, and circle, the default being the same as specifying disc. The type attribute for lists (but not for lists) is obsolete in HTML5.

So, for example, to use the square bullet (in place of the default disc) in a list, you can use HTML such as this (which displays as the second list in the bottom row of Figure 5-1):

[image: Images]

Or, for example, to use uppercase roman numerals, you could use code such as this (which displays as the fourth list in the top row of Figure 5-1):

[image: Images]

Or, to begin an ordered list at a specified number, you could use code like this (which will commence numbering from the digit 5, instead of 1):

[image: Images]

Definition Lists

HTML also supports another kind of list known as a definition list. This type of list is used in places where it is not appropriate to use either ordered or bulleted lists, for example, when giving definitions of words, which look better if the word being defined is used as the bullet.

In definition lists the first part of each list element is referred to as the term, and the second as the definition, which gives rise to the HTML tags of <dl> and </dl> for enclosing a definition list, <dt> and </dt> for denoting a term, and <dd> and </dd> for denoting the term’s definition, as shown in the following example:

[image: Images]

This HTML will display as follows:

[image: Images]

Creating Tables

HTML tables are great for presenting tabular data in a clear and concise way and have also been used for many years as an aid to layout, even though there are more efficient ways of creating good layouts using CSS. However, for knocking together a quick and dirty example, or for laying out rows and columns of data, tables are great.

You create a table using the <table> and </table> tags, which support the following attributes:

 • align This attribute supports values of left, right, or center to align the table according to the surrounding text, although the attribute is now deprecated and use of CSS is recommended instead.

 • bgcolor Using this attribute you can set the background color of a table. However, CSS is recommended for this as the attribute is now deprecated.

 • border With this attribute you can specify a border around the table of 0 or any positive number of pixels.

 • bordercolor With this attribute you can specify the color of the border using standard color names or hexadecimal number values.

 • cellpadding This attribute specifies the number of pixels space between cell walls and their content, which can be a value of 0 or any higher number.

 • cellspacing This attribute specifies the number of pixels space between cells and the outer table border, which can be a value of 0 or any higher number.

 • height and / or width With these attributes you can specify the width and height of a table. When these attributes are unspecified, the browser will resize the table to the best fit for its contents.

[image: Images]

 In HTML5 all of these attributes are obsolete, and should be avoided in new documents—use CSS instead.

For example, the following HTML creates a table that is 450 pixels wide, 200 pixels deep, has a 1-pixel border, 5 pixels of padding inside each cell, 5 pixels of spacing outside the cells, and a background color of cyan:

[image: Images]

Table Rows and Columns

Within each table there must be at least one row and one column. These are created using the <tr> (for table row) and <td> (for table data) tags. In the following example, two rows of three columns each are created:

[image: Images]

[image: Images]

The <tr> and </tr> tags are used twice for the two rows, while there are six instances of <td> and </td> for the six cells (two rows of three). Both these types of tags also accept the bgcolor, height, and width attributes that <table> itself does (with the exceptions noted below).

[image: Images]

 The <tr> tag accepts bgcolor in HTML4, but not height and width, while the <td> tag accepts all three attributes (but only in HTML4).

Therefore, the following HTML creates the same table but sets the top row of the table to green and the bottom to yellow. It also sets the first column width to exactly 200 pixels and then the remaining two columns to 25 percent each (by using the % symbol) of whatever width remains (in this case 250 pixels, leaving 125 pixels each), as shown in Figure 5-2.

[image: Images]

[image: Images]

FIGURE 5-2 A simple table with two rows and three columns

[image: Images]

 Because the widths have already been specified in the first row, there is no need to do so again for the second.

If you want the top row of your table to be a header, you can use CSS styling or HTML tags to format the headings in bold and otherwise change them, or you can use the <th> and </th> tags (for table heading), in a similar fashion to the <td> and </td> tags, like this:

[image: Images]

As you can see from Figure 5-3 (in which this additional HTML has been inserted before the green and yellow rows), the use of these tags is identical to <td> and </td>, with the only exception being in the way the cell content is displayed; it is bold and centered.

[image: Images]

FIGURE 5-3 A heading row of cells has been added to the table.

To further enhance the way tables display, you can also use the <caption> tag to properly caption them. So let’s bring this tag and all the others together into a real-world example of a useful table, as shown in Figure 5-4, which was created with the following HTML from data at wikipedia.org:

[image: Images]

[image: Images]

FIGURE 5-4 A table detailing browser market share for March 2014

Extending Rows and Columns

With HTML tables, you are not limited to a fixed number of rows and columns because you can make some cells extend over more than one column and/or more than one row using the colspan and rowspan attributes. For example, in the following very simple table, the numbers 1 through 10 are displayed in a table of three rows by four columns, as shown in Figure 5-5. This means that there are two extra cells that are not used and which are therefore merged into one and grayed out:

[image: Images]

[image: Images]

FIGURE 5-5 Two cells have been merged using the colspan attribute.

[image: Images]

 I have employed a few other interesting features in this table including setting its width to 450 pixels and the width of each column to 25 percent of that, the height of the table to 200 pixels, and using the align attribute with a value of center to center the contents of each table row. I have also used comment tags to show where the omitted cell would have been.

Because the third cell on the third row is now two cells wide, there is no fourth cell to define in that row, and so none is defined.

You can also extend a cell over two rows, as in the following example, which is modified from the previous one using the rowspan attribute (the result of which is shown in Figure 5-6):

[image: Images]

[image: Images]

[image: Images]

FIGURE 5-6 Two cells have been merged using the rowspan attribute.

Because the fourth cell on the second row is now two cells deep, there is no fourth cell to define in the bottom row and so, again, the final cell is not defined.

Following is an example of a table that’s four rows by four columns that could be used as the basis for a simple board game. It combines both the rowspan and colspan attributes by displaying the numbers 1 through 12 clockwise in small cells, around a larger central cell of double width and height, as shown in Figure 5-7:

[image: Images]

[image: Images]

[image: Images]

FIGURE 5-7 The four central cells have been merged using rowspan and colspan.

Summary

Now that you have lists and tables added to your HTML toolkit, you have the ability to really make your web pages stand out. In the next lesson I will show you how to add interactivity to your pages using hyperlinks, forms, and frames.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. Which HTML tag do you use to begin an ordered list?

 2. What tag is used to denote a list item?

 3. How do you specify an unordered list in HTML?

 4. How can you change the start value of an ordered list?

 5. How can you change the bullet type of an unordered list or the case of an alphabetic or roman ordered list?

 6. Which three tags are used by definition lists?

 7. Which tag is used to create an HTML table?

 8. What tags are used for table rows, table cells, and table headings?

 9. How can you add a caption to an HTML table?

 10. Which two attributes allow cells to spread out over more than one row or column?

[image: Images]

Links, Forms, and Frames

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

The great thing about the Internet is the way documents located anywhere in the world can be linked to each other so that you can navigate to them with a single mouse click. This interconnectedness even extends to the ability to embed pages or portions of pages from the same or any other website, anywhere at all, within the current page.

The same goes for sending data to websites and web pages, which is often achieved using forms. The data in a form can be posted to a web server for processing or, if it is sent in the correct way, a simple JavaScript can receive the data and act on it, without recourse to the web server.

In this lesson I show how all these things work and how you can use them to their best effect.

Using Hyperlinks

To create a link to another document, you must first know where this new document resides; in other words, whether it is on the local server or another one. An external web address (on a different server) uses what is known as an absolute URL (Uniform Resource Locator), which usually begins with http:// (or https:// for secure sites that use encryption), such as:

http://bbc.co.uk

It can be more complicated than that simple URL, by including the folder structure (and sometimes a filename too) within which a web page resides, like this, which accesses the folder/weather:

http://bbc.co.uk/weather/

Some organizations distinguish different servers by adding a prefix before the domain name, the most common of which is www, like this:

http://www.bbc.co.uk

Because typing www. involves an extra four characters, most good websites allow you to ignore this prefix (but not all). But when it is used, it denotes the organization’s main web server. Alternative servers may use prefixes such as news, like this (which leads to the BBC’s news service):

http://news.bbc.co.uk

The Query String

Many websites support the use of a query string, which is a string of data placed after the URL to provide additional information to a web server. For example, the following URL passes the value html5 to the field name q on Google’s search page, the result of which is shown in Figure 6-1:

https://google.com/search?q=html5

[image: Images]

FIGURE 6-1 The Google search engine returning results for “html5”

Query strings begin with a ? character, followed by a field/value pair that is separated by an = sign. Further field/value pairs may follow if preceded by a & character, like this:

https://google.com/search?q=html5&hl=fr

Here the field name hl is set to the value fr, which has the result of changing Google’s default language for this session to French, as shown in Figure 6-2. I cover query strings in more detail in the section on forms.

[image: Images]

FIGURE 6-2 Like Figure 6-1, but presented in French due to the query string used

Relative URLs

When documents reside on the current server, you can access them more easily and make them more portable by using relative instead of absolute URLs. For example, if you need to link to the file agenda.htm in the current folder, you can simply use its name as the URL, like this:

agenda.htm

Or, if the document is in the subfolder meetings, you could refer to it like this:

meetings/agenda.htm

Alternatively, if the file is in the parent folder of the current one, you can use the special token ../ which simply specifies that the document can be found one directory higher up, like this:

../agenda.htm

There again, if the file is in a sister folder, perhaps called misc, you can easily refer to it by referencing the folder from the parent one, like this:

../misc/agenda.htm

Finally, to refer to the root, or uppermost, folder of the current drive or web location, you use the / symbol. So if the file is in the root folder, it can be accessed like this:

/agenda.htm

[image: Images]

 This form of accessing is not fully relative to the current folder since it includes a jump all the way to the root folder, and the distance between the root and current folder is not indicated in this form of URL.

Creating Links

To create a link within an HTML document, you apply the <a> tag, supplying a value to an attribute called href (for hypertext reference), like this:

Visit Google

The final tag closes the pair of tags, which encompass the text to be displayed for the link, which in the preceding case simply looks like this:

Visit Google

If linking relatively to the file agenda.htm, discussed in the previous section, you might use one of the following forms of HTML depending on the file’s location:

[image: Images]

All of these display in the same way, like this:

View the agenda here.

URLs in Images

In Lesson 4 I showed how to embed images in documents, but assumed that the pictures resided in the current folder. But, in fact, they can reside almost anywhere on the current server, or elsewhere on the Internet, and all of the following are valid HTML for displaying an image located in different places:

[image: Images]

The target Attribute

You can specify whether a linked URL should replace the current web page or open in a new one by supplying a value for the target attribute. For example, if you would like a web page to open in a new blank window (or tab, according to how the user’s web browser is configured), you can add the specifier target=′_blank′, like this:

Visit Google

There are three other reserved words you can also supply to the target attribute: _self to replace the current page (the default), _parent to replace the parent page or frame (if the current document resides in a frame), or _top to ignore any and all frames and replace the entire contents of the current browser window with the new document.

Additionally, if you have already named a frame, window, or tab using the relevant HTML or JavaScript, you can specify that name as the target in place of one of the four reserved words.

Creating an Anchor

It is even possible to link to a section of a web page by first specifying an anchor using the name attribute of the <a> tag, like this:

Now you can link directly to that section of the web page using a query string referring to the anchor name, preceded by a # symbol, like this:

Click this link

When it is passed this URL, the web browser will load in the specified page and then scroll it so that the section beginning with the anchor name is at the top of the browser window. In HTML5 the name attribute has been obsoleted in favor of id.

[image: Images]

 A good example of anchors in action is the Wikipedia page on the subject. Go to the website at wikipedia.org and enter the search term html anchor. You will then be taken to the Wikipedia HTML Element page, and then scrolled down automatically to the section about anchors, as shown in Figure 6-3.

[image: Images]

FIGURE 6-3 The Wikipedia Anchor section is itself an anchor.

Building Forms

Web forms are the means with which you can request input from the user of a web page. Historically, web form data has been posted to the web server and then processed, but nowadays form data can be preprocessed using JavaScript to ensure that it is in the form required and all fields are correctly completed. Additionally, through the use of Ajax, a technology whereby JavaScript communicates behind the scenes with a web server, modern forms can check for the availability of a username you prefer, before you even submit a form.

[image: Images]

 In fact JavaScript can incrementally submit all parts of a form as you fill it in, avoiding the need to use a submit button at all. And where input is used only to control the current web page (and no interaction is required with the web server), JavaScript can read from and write to form fields, and retrieve data from a query string.

An HTML form begins with the <form> tag and is closed with </form>, and the tag supports three commonly used attributes, as follows:

 • method There are two values accepted by this attribute: post or get. When you select post, all the form data is sent to the web server invisibly (using headers), but when using get, the data is appended to an HTML request in a query string. This can result in messy-looking URLs but, among other possibilities, it does enable a form to be posted to a JavaScript program rather than a web server.

 • action This attribute should contain the URL to which the form is to be submitted. If the form is sent using a get request and then a ? followed by the form, data (as a query string) will be tacked onto this value.

 • enctype This attribute tells the program that will receive the form what type of data to expect, out of: application/x-www-form-urlencoded, multipart/form-data, and text/plain. The first encodes all characters before transmitting the form. The second is used when a file is also (or only) being uploaded to a web server. In the last form, text is transmitted, with spaces converted into + symbols for use in a query string. By default, if no encoding is specified, application/x-www-form-urlencoded is used.

Figure 6-4 shows a range of form elements all incorporated into a single form, using the following HTML:

[image: Images]

[image: Images]

[image: Images]

FIGURE 6-4 A form incorporating a variety of elements

[image: Images]

 The <pre> and </pre> tags are used here simply to help space out the form without having to use CSS or several HTML tags. It tells the browser to display all spaces within the tags as it encounters them, and not to treat them as collapsible whitespace.

The <input> Tag

The code in the preceding section makes use of the following type attribute values of the <input> tag:

 • text This value creates an input field suitable for entering text. You can change the width of the input field with the size attribute and limit the number of characters allowed with the maxlength attribute.

 • password This value creates an input field suitable for entering passwords in that all typed characters are replaced with the * character when displayed, but are properly stored internally. You can change the width of the input field with the size attribute and limit the number of characters allowed with the maxlength attribute.

 • radio Each form may have any number of radio buttons, but only one can be active at a time. When another radio button is clicked, the previously selected one is deselected. Radio buttons are round.

 • checkbox You use this value to create checkboxes, which are like radio buttons but are square, and more than one may be selected at a time.

 • hidden Sometimes you may wish to pass a value in a web form that the user shouldn’t see, such as an identifying token or other data, and doing so is accomplished by passing this value. In this case, you will also have to provide the value to be posted in the value attribute (see the section “The value Attribute”).

 • submit This value creates a button that will submit the form. By default the button will read Submit or Submit Query.

The name Attribute

When sending data using a form, you need to give each item of data a name so that both your form and the receiving program know which piece of data is for what. To do this you use the name attribute, like this:

<input type=′text′ name=′firstname′>

Here the field’s name is firstname and therefore it is clear that this will be used for the input of a person’s first name.

The value Attribute

You can specify a predefined value for any form field by assigning it using the value attribute, like this:

<input type=′text′ name=′firstname′ value=′Guest′>

Here a default value of Guest is given to the input field, which could be useful, for example, if allowing guests to make posts in a guestbook or comment. Such predefined fields can be overwritten or edited by the user, so the value is not fixed.

The <textarea> Tag

Sometimes the single line of input supplied by the <input> tag is insufficient in size, in which case you can use the <textarea> tag, which supports adjustable width and height, over more than one line of input. Unlike the <input> tag, however, predefined data is not passed through a value= attribute. Instead, whatever you place between <textarea> and </textarea> tags becomes the predefined input, which can then be edited or replaced by the user.

Therefore the following lines provide an empty and a predefined textarea input with a default width of 20 characters and height of two lines:

[image: Images]

You can specify the number of rows and columns to use for the textarea with the rows and cols attributes, like the following, which creates an area 30 characters wide and five lines high:

<textarea name=′summary′ rows=′5′ cols=′30′></textarea>

The <select> Tag

If you need a drop-down list of options from which a user can select one, you can use the <select> tag in conjunction with a secondary tag, <option>. Together these tags let you create a list of values and names to display, that will pop down when clicked, like this:

[image: Images]

The fourth element in the list has been set as the default by using the attribute selected=′selected′. When the list is popped down, this option will be the one shown as selected and will stay so, unless the user chooses a different element. If your HTML will not be repurposed in XHTML format, you can omit the =′selected′ assignment, and simply apply the keyword selected like this: <option value=′v′selected>Vanilla</option>.

The <button> Tag

This tag displays a clickable button but, depending on your target audience, you may choose not to use it because Internet Explorer versions 7 or lower will submit the contents between the <button> and </button> tags, while other browsers submit the contents of its value attribute. If you are certain your users will be on IE 8 or higher (or another browser), this tag will be safe to use.

The <label> Tag

This tag is especially handy for use with radio buttons or checkboxes (which are small) because you can place one of these elements alongside some explanatory text, and if you surround them both with <label> and </label> tags, the user can click either the text or the radio button or checkbox to activate it. Here’s a common example:

[image: Images]

This example displays as follows, and clicking any part of it (not just the checkbox) will check or uncheck the box:

[image: Images] I agree to these terms and conditions.

Frames and Iframes

There are two ways in which you can embed entire web pages within other pages: frames and iframes. The first way to do this, and the least recommended, is to use frames to split a web page into the multiple parts and then place them all in frames within the <frameset> tag, like this (although it is obsolete in HTML5):

[image: Images]

[image: Images]

 Note the use of the <noframes> and </noframes> tags in the example to display alternative content to users whose browser doesn’t support frames. Although all modern mainstream browsers do support frames, some specialist ones such as audio browsers for blind people, or text-only browsers, may benefit from the use of these tags.

This results in a top frame that takes up 20 percent of the browser height and which is pulled in from the file header.htm. Then there’s the main frame, which (due to the * attribute in the rows attribute) will expand to fit whatever space there is after the fixed-size frames are in place. It is loaded in from the file body.htm. And finally the footer frame is loaded in from footer.htm and placed in the bottom 20 percent of the web page.

The problem with this method is that the entire web page is made up of frames and there is no content on the page itself. This is obviously not ideal and is not good for ranking in search engines, which will not find such a page very interesting.

Instead I recommend that when you need a frame you use an <iframe> tag, as shown in Figure 6-5 (in which a Wikipedia page has been embedded within another web page), because you can drop a frame of any width and height anywhere in a document as easily as if it were an image, like this:

[image: Images]

[image: Images]

FIGURE 6-5 A Wikipedia page is embedded in another web page.

Summary

This lesson completes most of your introduction to HTML. The following lesson takes you through the remaining HTML 4.01 tags which (combined with this chapter) you can use as a reference if you are new to HTML, or as a refresher if you are a seasoned user.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. HyperText Transfer Protocol uses the string http:// to preface insecure Internet URLs, but how do you access encrypted, secure URLs?

 2. If http://mydomain.com calls up the root of a web server, how can you access a subfolder from this root called folder?

 3. How would you format a link to the website mydomain.com in HTML?

 4. Without mentioning a domain by name, what URL will take the user to the root document of a domain?

 5. How can you make a destination URL from a hyperlink load into a frame or window other than the current one?

 6. How can you hyperlink directly to a section within a web document?

 7. What HTML tag is used to create a form?

 8. How can you request a single text input line from a user?

 9. How can you provide more than a single line of space to input text?

 10. What tag can you use to embed another document within the current one?

[image: Images]

Using the Remaining HTML4 Tags

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

At this point in the book you now understand what HTML is and how to use many HTML4 tags. So, in this lesson, to illustrate how you can apply your new knowledge to any and all elements, we’ll look at implementing a few of the tags you haven’t seen so far.

At the same time you need to know which HTML4 elements have been deprecated or obsoleted in HTML5. Although you can still use them (for now), deprecated and obsoleted tags have been superseded by better methods of achieving the same result, so the developers of the HTML standard are giving us a warning that they reserve the right to remove these tags altogether at some point in the future—therefore you should avoid using them in all new documents.

As well as exploring some of the remaining HTML4 elements, we’ll also be looking at how to replicate the functionality of the deprecated HTML4 tags using CSS, or alternate tags.

Conditional HTML for Internet Explorer

The Microsoft Internet Explorer browser makes use of comment tags to create conditional sections of HTML for all versions between 5 and 9. The reason for this is that IE has several different ways of interpreting HTML depending on the version of the browser used, and the workaround Microsoft created to cater for these differences is to allow developers to place several different browser-specific sections of HTML in a single document, processing only those relevant to a particular browser version.

You use IE conditional comments by inserting a pair of square brackets immediately following the opening <!-- comment marker, placing an if statement inside, like this:

[image: Images]

In this instance the text in the comment is displayed only by the IE 6 web browser. All other versions of Internet Explorer and all other browsers will completely ignore the text within the comment tags. There are several possible statement types you can use, as follows.

Simple Comparisons

The previous example is a simple comparison, in which the IE constant is tested to see whether it has a value of 6, indicating that the current browser is IE 6. You can also simply test for the browser being any version of IE by leaving out the numeric value, like this:

[image: Images]

Higher or Lower Values

If, for example, you wish to display some HTML only to versions of Internet Explorer prior to version 9, you can use this form of conditional HTML:

[image: Images]

Here the lt stands for less than, and so the content of the comment tags is only uncommented if the browser is any version of Internet Explorer up to and including version 8. Another way to achieve the same result is with the lte operator, which stands for less than or equal to, like this:

[image: Images]

You can also check for a version of IE being greater than a given value, as with the two following conditional comments, both of which only display the contents of the tags if the browser is IE 8 or greater:

[image: Images]

[image: Images]

The Not Operator

You can also test for the inverse of a comparison using the not operator (which is an exclamation mark), like the following, which displays the contents only if the browser is Internet Explorer, but not version 6. Note the use of brackets to contain the expression that follows the ! symbol.

[image: Images]

The Mark of the Web

Internet Explorer also uses comments to stamp what it calls The Mark of the Web onto an HTML document, as a way of setting the security zone to which a document applies during development. For example, the following sets the security zone to the local intranet:

<!-- saved from url=(0016)http://localhost -->

And this comment sets the security zone to the Internet:

<!-- saved from url=(0014)about:internet -->

For further information, please visit tinyurl.com/motweb.

Let′s now take a look at the tags themselves.

<abbr> … </abbr>

This tag states that the content is an abbreviation. It is most helpful to specialized browsers (such as those for visually impaired people) or search engine web crawlers, and is best used in conjunction with a title attribute so that users can see an explanation when they pass the mouse over it, like this:

<abbr title=′Sound Navigation And Ranging′>SONAR</abbr>

You can also use the <dfn> (for definition) tag in a similar way to achieve the same result.

<acronym> … </acronym> (Obsolete)

This element denotes an acronym but it is now obsolete and you should use <abbr> instead—it works in the exactly the same way.

<address> … </address>

This element denotes the contents as containing address data. It is helpful to specialized HTML readers and search engine web crawlers. Simply remember to place the opening and closing tags around any addresses you put in a document to make them more easily machine locatable, like this:

[image: Images]

<applet> … </applet> (Obsolete)

This element used to be one way you could load an external app into a document, but it is now obsolete and you should use <object> instead.

<area>

This element creates an area within an image map, which can then be styled with CSS, or have a hyperlink attached. To use it, you must first load in an image to use as a map, like this:

With the image loaded, you use the <map> tag to create an image map, and then place one or more <area> tags inside it to define the area(s) you want, like this:

[image: Images]

The shape attribute can have values of rect, circle, or poly, and the coords attribute must then contain the values specifying the shape. Optionally, you can supply a title attribute for a tooltip, an href to create a hyperlink, and so on. Figure 7-1 shows the face.png image loaded. The image map areas and tooltips will only be visible when the mouse passes over them.

[image: Images]

FIGURE 7-1 Several examples from this lesson

<base>

Use this tag to specify the base destination for all URLs in a document and, optionally, a target window or tab. For example, if you wish all relative links in a document to refer to the base URL http://mywebsite.com/project/ even if the document is located elsewhere on the Internet, you can make this happen as follows:

<base href=′http://mywebsite.com/project/′>

Now, any hyperlinks that are relative will be applied to that base. For example, the following will now link to http://mywebsite.com/project/news.htm:

News

This will work even if you serve the current document from a local file system, or from anywhere else, making this a great way to handle documents that have to be relocated away from their original location for some reason.

<basefont> (Obsolete)

With this tag you used to be able to set the default font, color, and size, but it is now obsolete and, instead, you are recommended to use CSS, like this example, which sets 12-point text in a blue Arial font:

[image: Images]

And you can then use the mystyle class like this:

Some text

To assign a CSS rule to all elements in a document’s body (emulating the <basefont> tag), you can apply a rule to the body as follows, but be careful as you may find that you don’t actually want everything to display the same way:

[image: Images]

<bdo> … </bdo>

With this tag you can change the direction in which text flows. It takes two values for the dir attribute: ltr (the default) for left to right—for displaying most western languages, and rtl for right to left—for displaying languages such as Arabic. You use it like this:

<bdo dir=′rtl′>Mary had a little lamb</bdo>

Underneath the face image in Figure 7-1, you can see the result of applying this HTML is to display bmal elttil a dah yraM.

<big> … </big> (Obsolete) and <small> … </small>

The <big> element enlarges the size of text but is obsolete in HTML5, so you should use CSS to achieve the same effect. For example, the following CSS rule (which should be in the <style> section of a document) creates a class called big that doubles text size:

.big { font-size:200%; }

You can then use the class like this:

Normal text. Big text. Normal again.

Opposite to <big> there is the <small> tag, which is not obsolete in HTML5 because it has been assigned a semantic meaning, but can probably be better achieved with CSS when you just want smaller text rather than to imply something has less emphasis, such as the following to create a new class called small:

.small { font-size:50%; }

You can then use the class like this:

Normal text. Small text. Normal again.

<blockquote> … </blockquote>

With this element you can specify a large section of text to be a quotation from another source, so that it will be styled differently, like this:

[image: Images]

To define a shorter quotation you can use the <q> tag as follows, and quotation marks will be placed around it by the browser, as shown in Figure 7-2:

Dr. Seuss said, <q>Don′t cry because it′s over, smile because it happened.</q>

[image: Images]

FIGURE 7-2 Using <blockquote> and <q> elements

<center> … </center> (Obsolete)

This tag was used to align text to the center of the browser, but it is now obsolete in favor of using CSS, such as this rule that creates a class called center:

[image: Images]

This works because it forces elements to which it is applied to display as block elements (rather than inline), before setting the text alignment to centered. Once the class has been created, just apply it to your HTML, like this:

This is some left-aligned text

This is centered text

<cite> … </cite>

You can provide a citation for a section of text using this tag, as follows:

<cite>Yesterday</cite> by the Beatles. Recorded in 1965.

Other than italicizing (or otherwise slightly modifying its display), this tag has no effect. Its main purpose, though, is to provide information to specialist HTML readers and search engine web crawlers indicating the title of a work.

<code> … </code>

When you wish to display some text as if it is programming code, you can use this tag as follows:

[image: Images]

However, this tag doesn’t cause line feeds to be displayed, and neither does it show the spacing. Instead the preceding example will display all on one line. To overcome this, you should restrict this tag for use on single lines, and probably use the <pre> tag instead (as shown in Figure 7-3), which displays text as it finds it—in other words, preformatted.

[image: Images]

FIGURE 7-3 The difference between <code> and <pre> elements

The <samp> tag is identical to the <code> tag and can be used in the same way, although they do have different semantic meanings in HTML5. There is also a <tt> tag, which is meant to emulate the output of a teletype machine, and the <kbd> tag, which you can use to make output display as if it has been entered at the keyboard. All have the same formatting drawback that is corrected using the <pre> tag.

Also similar to these is the <dir> tag, which is now obsolete but was intended to make its contents look like a directory listing. Again, however, it did not issue line feeds and would actually wrap several lines if you didn’t use a
 tag after each—so it wasn’t very useful anyway. If you encounter this tag when maintaining a web page, you should probably replace it with one of the preceding non-obsolete tags.

<col> and <colgroup>

This tag specifies properties for each column within a <colgroup> section of a table. For example, to change the background colors for the columns of a table, you could use HTML such as this (as shown in Figure 7-4):

[image: Images]

[image: Images]

FIGURE 7-4 A table with colored columns

 …

Use this tag to indicate that a section of text should display as if it has been deleted. This tag is often used in conjunction with the <ins> tag to show a modification or correction that has been made (a deletion followed by an insertion), as shown in the second line up from the bottom of Figure 7-1:

I was pleased <ins>delighted</ins> to meet her!

This tag should also be used in preference to the equivalent <strike> tag, which has been obsoleted in HTML5. You can also use the <s> tag for the same effect, although <s> and have differing semantic meanings in HTML5.

<fieldset> … </fieldset>

When you need to group a collection of form fields together, you can do so with this tag, which draws a box around the grouped (contained) elements. In conjunction with the <legend> tag, it creates a title that breaks into the box border. Use it like this and the result will look like Figure 7-5:

[image: Images]

[image: Images]

FIGURE 7-5 Using <fieldset> and <legend> elements

 … (Obsolete)

This obsolete tag used to let you change the font type, size, and color, all things that are better done using a CSS class, like this:

[image: Images]

And you can then use the offer class like this:

This product is on special offer!

<frameset> (Obsolete)

In the past you used to use this tag in conjunction with the <frame> and <noframes> tags to create sets of frames in a web page that contained other documents, but they have now all been removed from HTML5 in favor of using the <iframe> tag and CSS.

<hr>

With the <hr> tag, you can display a horizontal rule with which to separate sections of a document. By default the rule will be the width of the page, but you can change this by supplying different values to its width attribute, like this (which creates rules of 100 percent of the parent object, 75 percent, and 100 pixels):

[image: Images]

In HTML5, however, the <hr> tag is used thematically instead of as an actual rule, so the width attribute is obsolete, even though most browsers will still display a horizontal rule. So let’s call this element half-deprecated, and maybe choose to use other tags and CSS instead—unless you intend to use it in its semantic context, in which case it’s fine.

<iframe> … </iframe>

Using this tag, you can load another document into the current one, displaying it within a frame with dimensions that you supply, like this:

<iframe src=′http://somesite.com′ width=′300′ height=′150′></iframe>

For browsers that don’t support inline frames, you can place text between the opening and closing tags that only they will display.

<isindex> … </isindex> (Obsolete)

This tag used to provide a single-line text-input that would be sent to the server for returning a list of pages matching the query. However, it was almost never used and is now obsolete because you can do the same thing using <input> fields as detailed in Lesson 6.

<menu> … </menu> (Reserved)

This tag used to specify a clickable menu, but it was deprecated in HTML4 and it is recommended that you use CSS instead, or simply place links in an ordered or unordered list. In HTML5, however, <menu> is back to represent a list of commands, but it is not yet supported by any browsers at the time of writing.

<optgroup> … </optgroup>

When you wish to create groups of options within a <select> element, you use the <optgroup> tag, which requires a label attribute to be supplied that gives the group a title. You can then use the <option> tag as you normally would to list the options for that group. The left-hand drop-down menu in Figure 7-6 is the result of the following HTML and does not use <optgroup>:

[image: Images]

[image: Images]

FIGURE 7-6 Using <option> tags in a <select> element

The right-hand drop-down menu in Figure 7-6 was created with the following HTML, which employs the <optgroup> tag twice:

[image: Images]

_… and […]

With the <sub> tag, you can display text in a smaller subscript font, while the <sup> tag displays it at the same small size but in a superscript font, like this (as shown in Figure 7-7):

[image: Images]

[image: Images]

FIGURE 7-7 Using <sup> and <sub> tags for super- and subscripting

Summary

Congratulations. You have now completed the first part of this book consisting of an introduction to HTML4, and should now either have a basic understanding of what you can do with it, or if you already knew HTML, you have refreshed all its tags in your mind.

In the following lesson we’ll start to get into the nitty-gritty of HTML5 and learn exactly what the fuss is all about.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back over the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. Which HTML tags let you use an image map on an image?

 2. How can you denote text as a citation?

 3. How can you change the direction of text flow from left-to-right to right-to-left?

 4. What is The Mark of the Web?

 5. Which tag displays text as if it has been deleted?

 6. Which tag displays text as if it has been inserted?

 7. How can you display text in a superscript font?

 8. What HTML tag is a good way to display short quotations?

 9. Which HTML tag is best for displaying long quotations?

 10. Which HTML tag displays preformatted text?

PART II

HTML5 and the Canvas

[image: Image]

[image: Images]

What’s New in HTML5

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

HTML5 is a specification that’s still under development (because a number of HTML5 features are still only sparsely implemented in some major browsers) even though the final draft was submitted in 2013. Therefore it’s important for you to know about all the tags (both current and future), and how they work on various platforms and browsers, so that you will know just what you can do with HTML5 right now, and also what might become available to you in the future.

But what exactly is HTML5? Is it a new standard different from the previous 4.01 version? Surprisingly, the answer is no, because HTML5 is simply a loose collection of enhancements that have been (or will be) made to the HTML 4.01 specification, covering a wide range of differing areas; it has simply been found convenient to label these additions as HTML5.

This is why I made sure that you had a thorough grounding in HTML 4.01 before beginning this section, because that means that you now actually already have over 75 percent of the full HTML5 specification under your belt. Now you’ll start to look at the remaining 25 percent or so that constitutes the HTML5 enhancements.

[image: Images]

 When an older browser comes across an HTML5 tag that it doesn’t recognize, the tag will simply be ignored, in the same way as if you use made-up tag names such as <newtagname> and </newtagname>. However, any text or HTML between such tags is displayed. This ensures that backward compatibility is retained for users with older browsers.

The Canvas

The <canvas> element was introduced by Apple to the Webkit rendering engine (the power behind the default iOS and Android web browsers, and also used by Safari, Opera, and Chrome), to provide a means of drawing graphics from within a web page, without having to load a plug-in such as Java or Flash. It was later standardized and has since been adopted by Opera and Gecko-based browsers, as used in the Mozilla Firefox browser, and is also included in Google Chrome and Microsoft Internet Explorer 9.

A canvas is a region within a web page that can be drawn on using JavaScript. As there can be more than one canvas in a web page, it is necessary to provide an ID for each so that the drawing commands know which canvas they should apply to. So, to create a canvas, you use HTML such as the following, which creates a 400×300-pixel canvas with the ID canvas1:

[image: Images]

[image: Images]

 This is a book on HTML5. However, many HTML5 features can only be accessed using JavaScript. Therefore in these lessons I provide illustrations of how to perform certain functions and give examples in JavaScript, but I do not teach the JavaScript language itself. You will be able to use and modify the examples since they are simple and clearly explained, but if you wish to achieve more complex results in JavaScript and other web development technologies, you may wish to read my other books in this series of 20 Lessons to Successful Web Development on CSS, JavaScript, and PHP.

Older browsers that do not recognize the <canvas> tag will ignore it and simply display the text between the opening and closing tag, which, in this instance, provides information to users about upgrading their browser.

The great thing about the HTML5 canvas is that you can now draw anything you like in a web browser, in a similar way to using a plug-in such as Flash, but using simple HTML and JavaScript syntax. This makes your web pages far more dynamic and able to display on a wider range of operating systems and devices. For example, the iOS infrastructure does not support Flash on iPhones and iPads, but does support the HTML5 canvas.

In Figure 8-1 I have created a 400×300-pixel canvas and drawn a square in its center using the following combination of HTML and JavaScript:

[image: Images]

[image: Images]

[image: Images]

FIGURE 8-1 A 100×100-pixel square in a 400×300-pixel canvas

The first part of this example is a repeat of the HTML snippet that creates the <canvas>, and the four lines within the <script> and </script> tags do the work of placing the square on the canvas. Let’s look at them in turn, starting with:

canvas = document.getElementById(′canvas1′)

This creates a JavaScript object (an element capable of holding different types of information), which refers to the canvas1 canvas. In the following line the background of the canvas is set to a light gray color (#ddd) by altering its CSS style property:

canvas.style.background = ′#ddd′

Next it is necessary to decide the way in which the canvas is to be accessed. For example, in the future it will be possible to access a canvas using 3D, which will make it possible to write professional-looking games. But for now 2D is the only option available, and that is what I have used, as follows:

context = canvas.getContext(′2d′)

Finally, a square is drawn on the canvas by using the context and the JavaScript function fillRect(). The square has its top-left corner at 150 pixels in by 100 down and has a width and height that are both 100 pixels:

context.fillRect(150, 100, 100, 100)

As you can see, even if you are not a JavaScript programmer, this is relatively straightforward, and will become more so when I explain the canvas element in more detail in Lessons 9 and 10. In the meantime, Figure 8-2 shows the addition of a circle and some text to the canvas, achieved using the following extra statements added into the <script> section of the example:

[image: Images]

[image: Images]

FIGURE 8-2 A circle and some text have been added to the canvas.

Geolocation

Geolocation is a technology that is used to determine the location of a computer or mobile device, which can be returned to the web server in order to provide relevant information. For example, a local map can be displayed, or details of local stores such as restaurants or gas stations can be provided.

Geolocation can also be used to help improve web connectivity by notifying you of nearby Wi-Fi access points, or to alert you of the proximity of friends, acquaintances, or colleagues.

Different methods are used to obtain your location, starting with your IP (Internet Protocol) address, which can reveal which country you are in, and programs that do this can often get very close to your locality. There’s nothing you can normally do about this because all websites need to know your IP address in order to send you data. However, there are third-party services that will act as a proxy for you, replacing your IP address with theirs when communicating with a web server.

With HTML5 geolocation, if Wi-Fi is enabled on your computer, it is also possible to send more precise location information by scanning your locally accessible Wi-Fi hotspots to pinpoint your location, using databases containing millions of hotspot names and MAC (Media Access Control) addresses, along with their locations.

Also, if you are using a mobile device, triangulation of the mobile antenna masts you can connect to reveals your location quite accurately. Finally, if your computer has GPS (Global Positioning System) functionality, this can reveal your exact location to within just a few feet, as long as your device is in range of the GPS satellites that orbit the earth.

In Figure 8-3 permission has been granted by the user to return the geolocation data of a device at the location 40.689167, -74.044444, which is a point close to the Statue of Liberty in New York City, USA.

[image: Images]

FIGURE 8-3 A map is displayed as a result of returning geolocation data.

Geolocation is explained in greater depth in Lesson 15, and JavaScript code is supplied, which you can use without needing to learn the entire language.

Forms

Forms have been provided with a number of new enhancements in HTML5, and in my view they are long overdue (and still only partially supported by some browsers).

To start with, you can now place <input> tags outside of <form> and </form> tags as long as the new form attribute is used to identify the form ID to which the input refers. Similarly, you can change the method (either Get or Post) of a form with the new formmethod attribute.

There are also enhancements letting you change the encoding type of a form, or create or override the new formnovalidate attribute. You can also use the formaction attribute to change the action (destination) of a form, and you can use formtarget to change the target frame, tab, or window. At the same time, it is now possible to change the height and width of the image type of the <input> tag using height and width attributes.

Two particularly handy new attributes are autocomplete and autofocus. The former allows previously entered values for a field to be offered as suggested values, while the latter is used to tell the browser to automatically focus on a particular form field ready for input. This is what happens when you go to a search engine such as Google (see Figure 8-4), where you can begin to enter your search immediately. In the good old days before the use of these tags and JavaScript, you had to click in a field first before it would obtain focus, and you would not be offered suggestions as you typed.

[image: Images]

FIGURE 8-4 Google supports autofocus and autocompletion.

Data lists can also now be included in a form such that you can create a list of labels and values to which you assign an ID. Then you can use that ID as the value for the new list attribute to easily offer a selection of choices to an input. This is especially useful when you wish to use the same list more than once as it avoids unnecessarily duplicating it.

New min, max, and step attributes have also been added for inputs that contain numbers or dates, and there’s a new multiple attribute with which you can allow an <input> tag to accept multiple values. This is especially useful, for example, when selecting groups of files to upload to a server.

Pattern matching is now supported in forms via the new pattern attribute, the placeholder attribute lets you display some hint text in a field that disappears once the field is selected, and you can use the required attribute to tell a form that a field must be completed.

Several new values are now supported for the type attribute, including color, date, month, time, week, number, range, tel, url, and email. These allow the browser to check such input fields for proper syntax and sensible data being entered. There’s also a powerful search type value, which enables a field to provide search suggestions in a similar fashion to the instant results that appear when entering a request into the Google search engine.

All these values and more are fully detailed in Lesson 16.

Local Storage

Before HTML5, the only way that data could be stored on a local device was via the use of cookies, which are small bundles of data generally used to help retain the contents of a shopping basket, or more controversially, by advertising websites to track your browsing.

But it has long been realized that the web could be significantly sped up if a local data store were made available that could be used, for example, for storing longer documents as you edit them, prior to them being sent to the server for safekeeping. With HTML5 this is possible, and even large chunks of data (up to 5MB per website) can be stored locally, but only if the user agrees to it, so you retain full control.

What’s more, on some browsers local storage can be accessed like a database using Web SQL, providing the possibility of creating advanced local web apps for handling data such as your music collection, or personal exercising and dieting, and so on.

Lesson 17 fully explains what you can and can’t do with local storage.

Audio and Video

Possibly the most interesting and popular enhancements in HTML5 (other than the canvas) are the ability to now play audio and video directly from within HTML, with no need to embed Flash or any other type of object as a player.

To do this, the new tags <audio> and <video> have been provided, but how to use them is still a bit up in the air as it can depend on the browser and operating system being used. In addition there has been a big hoo-ha going on about the use of the H.264 video codec (the software algorithm used to compress all the video data down to a manageable size for the Internet), which is not free for products that encode or decode the video (such as browsers), although it is free for end users.

Because of this, different browsers support different codecs, but there are workarounds and tweaks you can employ to ensure that just about all your users can play HTML5 audio and video, and all of this is explained in Lessons 18 and 19.

The <embed> Tag

While on the subject of embedding objects (such as video players) in a web page, the <embed> tag, which was officially deprecated in HTML 4.01, has now been restored and made official again. Therefore, for example, you can officially use code such as the following to play a YouTube video in a non-HTML5 browser using Flash:

[image: Images]

Code such as this can be inserted between <video> and </video> tags so that browsers that do not recognize them will use Flash to display a video, as shown in Figure 8-5.

[image: Images]

FIGURE 8-5 Embedding a YouTube Flash video

Microdata

Microdata is a subset of HTML designed for making a document have meaning to machines by providing metadata, just as it has meaning to a reader of the document.

What it does is make available the following new tag attributes: itemscope, itemtype, itemid, itemref, and itemprop. Using them you will be able to clearly define the properties of an item such as a book, providing a range of information that a computer can use to understand, for example, its authors, publishers, contents, and so on. Further information on microdata is in Lesson 20.

Web Workers

Normally, to achieve background processing in JavaScript, you need to set up a timer that is constantly called, supplying slices of processor time to one or more functions, and these functions must then quickly do a small piece of work and return, in order to not slow down the browser and make it seem sluggish.

Web workers are not yet widely implemented but will provide a standard way for browsers to run multiple JavaScript threads in the background that can pass messages to each other, in much the same manner as the threads running in an operating system. You will simply call up a new worker script, which will sit there in the background waiting for messages to be sent to it, which it will then act upon.

On the whole the aim of this is to achieve a speed increase of two to three times over regular background JavaScripts, although getting to grips with programming them is likely to require a steeper learning curve. Lesson 20 discusses web workers in more detail.

Web Applications

The idea of offline web applications is that once you visit a website, it tells your browser about all the files it uses so that the browser can download them all and you can then run the web application locally, even without an Internet connection.

There is a complication with web applications in that they require a web server to set up with the correct MIME types (originally known as Multipurpose Internet Mail Extensions, but the word Mail has since been replaced with Media), in order for a browser that understands web applications to make use of the feature and fetch the files it needs. Lesson 20 goes into web applications in greater detail.

Still to Come

There are a number of other new HTML5 tags that have not yet been implemented in any browser, and which I therefore won’t detail (particularly since their specs could change).

But, for the sake of completeness, these tags are: <article>, <aside>, <details>, <figcaption>, <figure>, <footer>, <header>, <hgroup>, <keygen>, <mark>, <menuitem>, <meter>, <nav>, <output>, <progress>, <rp>, <rt>, <ruby>, <section>, <summary>, <time>, and <wbr>. You can get more information on these and all other HTML5 tags at dev.w3.org/html5/markup.

Summary

This lesson has introduced you to all the new goodies in HTML5. In the following lessons I will explain each of these main areas in depth so that you can begin to use the tags that have been widely supported in your own web pages, and will be prepared to also include the lesser-supported ones as browsers pick them up.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. Which tag is used to create an HTML5 canvas?

 2. What happens with the canvas in non-HTML5 compatible browsers?

 3. Which JavaScript function is used to fetch an object with which to access an element such as a canvas?

 4. What does the acronym GPS stand for?

 5. Which new HTML5 technology is superior to cookies?

 6. Which two new tags have been added to HTML5 to handle multimedia?

 7. What HTML tag is used to allow fallback to Flash for playing media?

 8. What new HTML5 technology helps provide additional information about the contents of a document?

 9. Which new HTML5 technology lets the programmer offload background JavaScript tasks to be handled by the web browser?

 10. What did the acronym MIME stand for, and what does it stand for nowadays?

[image: Images]

Accessing the Canvas

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

There are no two ways around it. If I’m going to show you how to use the HTML5 canvas, then I’m also going to have to give you an ultra-crash course on JavaScript, or at least on those aspects of it required for manipulating the canvas.

So here goes (if you already know JavaScript, you can briefly skim the following section, before moving on to the “Accessing the Canvas with JavaScript” section).

An Ultra-Crash Course in JavaScript

Although I’m going to teach you a few parts of JavaScript, it is by no means the entire language, but it will be just sufficient for you to complement your use of HTML for manipulating the canvas. Along the way I also touch upon a few elements of CSS (Cascading Style Sheets) too.

JavaScript was created to allow you to directly access various parts of the HTML DOM (Document Object Model). To explain the DOM, take a look at the following example web page:

[image: Images]

[image: Images]

This is a simple page that displays a link to the Yahoo! website and has a form underneath that submits a username to a PHP script with the filename form.php. Beneath that an image is included. In terms of this web page’s DOM, it looks something like Figure 9-1, in which the entire content is contained within <html> and </html> tags.

[image: Images]

FIGURE 9-1 The DOM of the preceding HTML example

Looking at the <head> section in Figure 9-1, you can see that there are two elements. The first is the document’s title of Example, contained within <title> and </title> tags, while the second is the meta tag, which tells search engine crawlers that the document may be crawled, its contents indexed, and any links can be followed. This is done by passing the value robots to the name attribute, and index, follow to the content attribute. Meta tags are self-closing (empty) so there is no </meta> tag. The section is then closed with a </head> tag.

To the right of the figure is the body of the document, which is contained within <body> and </body> tags. There are three elements in this section, a link to yahoo.com in <a> and tags, an embedded image that uses a self-closing tag, and a form contained within <form> and </form> tags.

The form assigns the value login to the id attribute, post to the method attribute, and the program name form.php to the action attribute. This is the program that is to process the form when it is submitted. The opening <form> tag is then closed, and inside the form there are two self-closing <input> tags. The first passes the value name to the name attribute, the value text to the type attribute, and the value jane to the name attribute. This prepopulates the input field with the word jane, but it can be altered by the user.

After this a second <input> tag creates a submit button by passing the value submit to its type attribute. Finally the form is closed with a </form> tag.

When opened in a browser, the document looks something like Figure 9-2.

[image: Images]

FIGURE 9-2 The result of displaying the example web page

Accessing Form Elements from JavaScript

Now let’s look at how these elements can be manipulated from JavaScript, which should always be placed within <script> and </script> tags. For example, the following code changes the document’s title from Example to This is an example web page:

[image: Images]

This has the same effect as if you opened the document and went straight in and edited the title within the <title> and </title> tags yourself. See how easy JavaScript is?

Similarly the form method type of post is easily changed to get, like this:

[image: Images]

Here the JavaScript references first the document, then the forms within that document, then the form with the id of login and its method, which is then modified.

Using the getElementById() Function

In the previous two examples I showed you how to access parts of a document by their type, but there’s a far, far easier method, which is to give every element in a document a unique id, and then to access them from JavaScript using just those ids.

For example, if the tag is given an id (such as image1) with which it can be identified, it’s possible to replace the image loaded by it with another, like the following, in which the male-shaped dad.jpg image is replaced with mom.jpg to match the default name in the form field of jane:

[image: Images]

The trick here is to use the JavaScript function getElementById(), which will let you access any DOM element that has been given a unique id.

So let’s look at another example by restoring the name and image mismatch by altering the default name value. If we were to use the initial example in this section, we would have to access the element via document.forms.login, and so on, but by giving the form field an id (for example of name) and using getElementById(), we can avoid all that and go straight to the element to change it, like this (in which I have shown only the changed <input> tag and not the remainder of the HTML, which remains unchanged):

[image: Images]

See how much easier it is than having to remember whether an element is part of a form, an image, or something else? All you have to do is know the name of an element and getElementById() will do the job of finding it for you. Figure 9-3 shows how the web page now displays after these changes. The title is different, the default input value is ′mike′, and the image shown is mom.jpg (yes, the gender is all confused again).

[image: Images]

FIGURE 9-3 Three elements of the page have been modified with JavaScript.

The Simpler O() Function

I use the getElementById() function so often that I always create a simple function called O() (with an uppercase O) to make it easier to type in. The function looks like this and I simply place it anywhere in a section of JavaScript, like this (highlighted in bold):

[image: Images]

Doing this saves 22 characters of typing each time the replacement O() function is used instead of the longer one. One reason for the tremendous shortening is that the preceding document keyword has also been incorporated into the O() function, saving on typing that in too.

[image: Images]

 In JavaScript tutorials on the Web and in books, you may see functions referred to either by the term function, or using the term method, but they both mean the same thing: a set of instructions grouped together, which can receive one or more values and then return a value upon completion.

However, there’s one further step I like to take that makes the function even more useful and that’s to allow the passing to it of either element IDs (which is what it does so far), or an object that is the result of having called the O() function.

Let me explain it like this. Instead of directly manipulating the value of the form input with the id of name directly, let’s first create what is called an object from this element, like this:

newobject = O(′name′)

Now that I have this object, I can access it several times without ever having to call the O() function again, like this (in which the value is changed on separate occasions):

[image: Images]

Now, whenever I wish to refer to the element in question, I can simply use the object that I created. But now, what if I want to change the style property of an object? Because the S() function I created for this (shown after this paragraph) calls the O() function, and that only supports id names, then the only way to do this is to go back to using a call such as this (to make the input exactly 150 pixels wide):

S(′name′).width = ′150px′

But I have been using the object newobject, and for the sake of consistency, I would prefer to pass that to the S() function. To enable this, all that’s necessary is to allow the O() function to be passed either an object or an id, so the argument passed in obj is analyzed by the code and if it happens to already be of the type object, then the object is simply returned, because it is already an object.

But if it is not of that type, then it must be an id name, in which case it is looked up and returned as an object with a call to getElementById().

[image: Images]

 If this confuses you, don’t worry. You don’t need to learn JavaScript, or (indeed) understand fully the workings of these snippets of code, in order to use the following examples to access the HTML5 canvas.

The Partner S() Function

In a similar fashion to the savings produced by using the O() function, there is one other that I employ frequently because it is also used all the time in JavaScript, and that’s the new function S() (with an uppercase S). This is used to enable JavaScript to easily access any style attribute of any element.

For example, if I wish to change the width and height of the image, I can do it like this (which results in Figure 9-4, when the other lines of HTML and JavaScript we’ve been using are included):

[image: Images]

[image: Images]

[image: Images]

FIGURE 9-4 The mom.jpg image has been reduced in size.

[image: Images]

 The // characters create a comment to the end of the line, which I have used in the preceding example to comment each of the final two lines within the script (that the second version of syntax is shorter than the first).

What I’ve done here is simply make the S() function place a call to the O() function but with an added .style suffix, and now I can use O() for accessing elements by name, and S() for accessing the style attributes of elements by name.

Believe it or not, these two functions alone provide you with a huge amount of scope and power to modify any part of a document, without learning the JavaScript language. All you need to remember to do is include the O() and S() functions somewhere in a script in any document that will refer to them. Then, whenever you need to use these functions, open up a new <script> tag and access them, like this:

[image: Images]

This works because you are allowed to enter <script> tags as many times as you like in a document—there is no requirement to keep all your JavaScript code within a single set of <script> and </script> tags, although you may do so if you wish.

Alternatively, if you would like to create an object on the first call to the O() function, and then reference that instead, the preceding code might look like this:

[image: Images]

This code can be quicker as the object is only looked up once, and is therefore a more efficient way to code when an element may be accessed more than once. By the way, the reason myimage does not have quotation marks around it is because it is an object, not an id value that is a string.

[image: Images]

 I use the functions O() and S() extensively throughout this book, so I recommend you get comfortable with them by downloading the examples from the companion website and then playing with them until you feel you have mastered their use.

The <canvas> Tag

With that little (but necessary) preamble over, now we can get down to directly manipulating an HTML5 canvas. As you may recall from Lesson 8, the following code creates a canvas and places a square in its center (and results in Figure 9-5):

[image: Images]

[image: Images]

[image: Images]

FIGURE 9-5 Drawing a black square on a gray canvas

The <canvas> tag itself supports only two attributes; width and height, as used in the example. And it is important that you provide a unique identifier for each canvas you use, so that you can access them from JavaScript. In the example, the id is given a value of canvas1.

The other thing to remember about the <canvas> tag is that anything between it and the closing </canvas> tag is ignored by all HTML5-compatible browsers, and so is displayed only by browsers that do not recognize it. Therefore this is where you can place text and/or HTML to inform users about what they are missing and perhaps how to upgrade their browser.

Accessing the Canvas with JavaScript

Let’s look closely at the code from the previous example, as follows:

[image: Images]

[image: Images]

Ignoring the opening and closing tags, and the O() and S() functions, the object canvas is created by passing the id of the canvas (canvas1) to the O() function.

Armed with this object, the following line passes it to the S() function and then sets its background property to a light gray (#ddd) color. This is where the power of extending the O() function to also support objects comes in (because the S() function calls the O() function). By virtue of this extension it has been a simple matter to pass the object created from the canvas straight to the S() function, allowing for far simpler and more compact coding.

Next, to be able to read from and write to the canvas, a context (with the name context) is created with which to access it, using the JavaScript getContext() function, which is told to treat the canvas as a two-dimensional workspace.

Then the final line uses this context to create a filled rectangle at an offset of 150 pixels horizontally in from the top-left corner, and 100 pixels vertically down from the same corner. The rectangle is given a width and height of 100 pixels, resulting in a filled, black square.

[image: Images]

 From now on, I will be assuming that you have placed the two functions O() and S() within <script> and </script> tags somewhere in your document, and will not be showing the code for these functions in any more examples. So please ensure that you have included them before testing any examples, or they will not work.

Converting a Canvas to an Image

Because of the way the canvas is created, it is not possible for users to right-click and save a copy to the desktop, for example. Likewise, you cannot directly use a canvas as an image. But there is a way you can convert a canvas to what is known as a data URL. This displays as an image and can then be copied and/or saved.

Consider the following code in which a canvas is created and then followed by an image, which does not have any src attribute:

[image: Images]

What this code does (remember, it assumes you already have the O() and S() functions listed somewhere) is identical to the previous example, but there is a new line of code at the end that accesses the image using the O() function and then attaches a value to its src attribute, which is gained by calling the toDataURL() function on the canvas object.

The toDataURL() function extracts the image data from the canvas referred to by the canvas object and returns a string of text in which the canvas has been encoded as a displayable image, which is interpreted by the browser and reconstructed into an image.

When the code is loaded into a browser, it displays as Figure 9-6. Notice how the background color of the canvas (which has been applied only to the canvas element and not the contents of the canvas) is ignored by the toDataURL() function, so that when the image data is extracted, you see only the central black square.

[image: Images]

FIGURE 9-6 Displaying a canvas and a copy saved into an image

The imagetype Argument

When an image is created from a canvas, you can choose the type of image to use between a jpeg and png image using the imagetype argument, as in the following two examples, which are identical in result since the default image type is png.

[image: Images]

Or, for a jpeg image, you can use code such as the following three examples, which create a very low-quality, medium-quality, and a very high-quality image by passing an additional argument containing a value between 0 (low quality) and 1 (high quality):

[image: Images]

[image: Images]

 Remember that the canvas object is used to call the toDataURL() method, not the context object. This is because the latter is for applying changes to the canvas using the context rendering assigned, while the former refers to the canvas object itself.

Uses for this feature could be online image manipulation programs that run in the browser (as opposed to on a web server somewhere far away from the browser), and which returns a transformed or newly created image ready for the user to save to their hard disk and use. This means that it is possible to use the HTML5 canvas to create a graphics program, like Photoshop, that runs within a browser and requires no interaction with a web server. Therefore it could also be turned into a web app or even a standalone app for a mobile device like a tablet or phone.

Summary

Now that you understand the basic elements of the HTML5 canvas, and have the tools and information required to use it, in the following lesson I explain in depth how to use each aspect of the features available for writing to a canvas, including drawing lines, rectangles, and circles; changing colors; using pattern and gradient fills; writing text; changing font face; using lines, paths, and curves; applying images to a canvas; adding shadows; direct pixel manipulation; compositing and transparency; transformations and translations, and more. By the time you complete the next lesson, you will be an expert at using the HTML canvas.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. What is the DOM?

 2. What JavaScript command could you use to change a web document’s title?

 3. How can you create a JavaScript object from an HTML element?

 4. What attribute must a canvas be given in order for JavaScript to access it?

 5. How can you access an object’s style properties from JavaScript?

 6. What is the purpose of the O() function in these examples?

 7. What is the purpose of the S() function in these examples?

 8. What kind of object is needed to be created from a canvas object in order for drawing functions to operate correctly?

 9. Which JavaScript function is used to copy canvas data into an image?

 10. How can you create a single-line comment in JavaScript?

[image: Images]

Creating Rectangles, Fills, Gradients, and Patterns

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

Now that you’ve seen how to use JavaScript to access the HTML5 canvas, let’s look at all the different functions available for creating different effects, including drawing lines, rectangles, and circles; changing colors; using pattern and gradient fills; writing text; changing font face; using lines, paths and curves; applying images to a canvas; adding shadows; direct pixel manipulation; compositing and transparency; transformations and translations, and more.

Drawing Rectangles

Other than drawing lines (which we’ll get to later, since they are handled using paths), rectangles are probably the simplest type of object you can draw on an HTML5 canvas, as you’ve already seen with the fillRect() function used in a couple of examples.

You can also fill a rectangle with a color other than black, and you can create unfilled (or clear) rectangles with different border widths, line styles, and corners.

[image: Images]

 Remember that JavaScript functions are also often referred to as methods, but as the terms are interchangeable, I have selected to use only the word function.

The fillRect() Function

We have already explored the fillRect() function; it takes four arguments representing the vertical and horizontal offsets of the top left-hand corner of a rectangle from the top-left corner of the canvas, followed by the rectangle’s width and height, all of which are in units of pixels, or one screen dot.

The syntax of the function is as follows, which creates a filled rectangle 50 pixels wide and 70 pixels high, at an offset of 20 pixels in from the left edge of the canvas (410 by 170 pixels), and 30 pixels down from its top:

[image: Images]

This example shows all the bits and pieces needed to set up everything ready to make the call to fillRect(), but for simplicity in the rest of this lesson, I will show only the relevant calls required for the function or functions being explained, like this:

context.fillRect(20, 30, 50, 70)

[image: Images]

 If you are trying out these examples, you must ensure that you have first created a suitable canvas using the <canvas> and </canvas> tags and specified a suitable width and height for it (with enough room to display whatever is written to the canvas), have entered the O() and S() functions within any preceding pair of <script> and </script> tags (including the current pair), and have created a context for accessing the canvas called context.

The default color of a filled rectangle is black, but you will learn how to change this in the next section, or even how to use a gradient or a pattern to fill it later in this lesson.

The fillStyle Property

Using the fillstyle property, you can set the type of fill color to use, using either short (three-digit) or long (six-digit) hexadecimal colors. For example, to choose red you can pass the values #F00 or #FF0000, like this:

context.fillStyle = ′#F00′

You may also use any of the HTML color names (listed in Lesson 4) such as red, steelblue, and so on, like this:

context.fillStyle = ′red′

Once selected, the color will apply to all fill operations until it is changed. For example, the following pair of lines will create a red rectangle, rather than a (default) black one:

[image: Images]

For more information on using colors, please refer to Lesson 4.

The clearRect() Function

If you want to draw a clear rectangle, in which all the RGBA (Red, Green, Blue, and Alpha transparency) values of a pixel are set to zero, you can use the clearRect() function, as follows:

context.clearRect(20, 30, 50, 70)

This function uses the same arguments as fillRect(), namely the horizontal and vertical offset of the top left-hand corner of the rectangle from the top-left corner of the canvas, followed by the width and height of the rectangle to clear.

The cleared area will be stripped of all color, leaving only any underlying background color that may have been applied to the <canvas> tag (and which therefore is not part of the canvas, but is actually underneath it).

The strokeRect() Function

With the strokeRect() function, you can create a rectangle that uses the current strokeStyle, lineWidth, lineJoin, and miterLimit properties to draw the border lines and corners (as detailed in the “Drawing Lines” section in Lesson 12), and is used like this:

context.strokeRect(20, 30, 50, 70)

The function takes the same arguments as fillRect(), namely the horizontal and vertical offset of the top left-hand corner of the rectangle from the top-left corner of the canvas, followed by the width and height of the rectangle to draw.

It is possible to apply these effects on their own or in combination with others, so the following code (in which I have lined up the columns of arguments for ease of comparison) is valid and results in Figure 10-1, in which a red outer square created using fillRect() has a clear one drawn over it using clearRect() (because it’s clear all you see is a thick-lined outer rectangle—the inner area of which has been cleared). Within the clear square is another lined rectangle which was created using the strokeRect() function:

[image: Images]

[image: Images]

FIGURE 10-1 The three types of rectangle drawn inside each other in red

[image: Images]

 I have covered rectangles before lines because they are simpler to draw. As you will see in Lesson 12, lines must be drawn by creating paths of locations that you connect up. Therefore, the properties that are associated with lines and paths are explained in that section, rather than here.

Creating Gradients

You saw how to create a simple, filled rectangle in the previous section, but it’s also easy to apply a variety of different types of gradient to both the fillRect() function, as you’ve already seen, and the fill() function, which is introduced later on.

The createLinearGradient() Function

The simplest type of gradient available with the HTML5 canvas is a default linear gradient. To create a linear gradient, you need to specify the colors to use and the positions at which they should change. For example, in the following statement, the object gradient is set to start at the location 55,10 and end at 55,160.

gradient = context.createLinearGradient(55, 10, 55, 160)

Why these coordinates? Well, you must specify the start and end relative to the entire canvas, not to the object being filled. Therefore, I will be drawing a 90×150-pixel rectangle with its top-left corner at location 10,10, and then I choose a start point of 55,10, which is halfway along the top of the rectangle, and an end point of 55,160, which is halfway along the rectangle’s bottom edge.

[image: Images]

 The reason that the gradient start and end locations are relative to the canvas and not to objects being filled is to allow you greater subtlety and the ability to create a gradient that covers the entire canvas (or as much or little as you like), and of which only the part existing underneath an object being filled is revealed. This, for example, would enable you to create a gradient that represents a sunset and then draw the inside of a car and use the gradient fill on the windows to reveal the correct parts of the outside gradient for the positions of the windows.

Now that the linear gradient object is created, it is necessary to choose the start and end colors, as with the following two lines, which set an initial stop position (as it is known) of the color #FFF (white), and an end of #000 (black). This is achieved using the addColorStop() function, which is fully explained a little further on, as follows:

[image: Images]

What these two calls do is specify with the first argument to each the position at which the color is to be applied (in this case they are 0 and 1 for the start and end), and the second argument sets the color to apply at each of these positions. This gradient is then applied to the current context using the fillStyle property, and then a 90×150-pixel rectangle is drawn using these fill values:

[image: Images]

The result of these commands looks like Figure 10-2, in which you can see the fill fade linearly from white to black starting at the top and ending at the bottom of the rectangle.

[image: Images]

FIGURE 10-2 A vertically aligned linear gradient fill

You can change the start and end coordinates for the fill to any other locations. For example, in Figure 10-3 a second rectangle has been filled from left to right by choosing the following values for the call to createLinearGradient():

gradient = context.createLinearGradient(110, 85, 200, 85)

[image: Images]

FIGURE 10-3 A horizontally filled rectangular gradient has been added.

These coordinates specify a start point halfway down the rectangle’s left edge, and an end that is halfway down its right edge, as used by this fillRect() call:

context.fillRect(110, 10, 90, 150)

In fact, you can choose any start and end location (within or without the area to be filled) as, for example, with this code, which creates a diagonal gradient from top left (210,10) to bottom right (300,160), as shown in Figure 10-4.

[image: Images]

[image: Images]

FIGURE 10-4 A new rectangle is added with a diagonal gradient fill.

The createRadialGradient() Function

You can also create a gradient that expands radially. That is, it starts at a point and has a certain radius, and then ends focused around another point, with a different (or the same) radius.

For example, the following call to createRadialGradient() specifies an initial location at the center of a rectangle and a width of 0 pixels. The second pair of coordinates remains the same, but with a radius of 45 pixels, so that the gradient starts in the center and continues to the left and right edges. As you can see in Figure 10-5, the top and bottom of the rectangle are outside the radius and so are provided with the color applied to the final stop, which is black:

[image: Images]

[image: Images]

FIGURE 10-5 The fourth rectangle features a radial gradient.

So that you can see the effect of using start and/or end coordinates that are outside the area being filled, I have increased the radius of the second part of the gradient in Figure 10-6 to 150 pixels, so that it extends past all the rectangle’s edges, like this (as shown in Figure 10-6):

gradient = context.createRadialGradient(355, 85, 0, 355, 85, 150)

[image: Images]

FIGURE 10-6 The radius of the gradient fill has been substantially increased.

[image: Images]

 The second radius value of 150 pixels creates a circle with a diameter of 300 pixels. But note that although this circle extends beyond the area being filled and well into the previous rectangle, the other rectangle is not affected. This is because the gradient applies only to future fills, and not to any pre-existing fills.

The addColorStop() Function

Now that you’ve seen how to create two different types of gradient fills, let’s look at how to modify these to stretch areas of a color and provide nonlinear fills, and to also incorporate colors.

The way to do this is to modify the values passed to the addColorStop() function, and to add more of them to create in-between steps. For example, here’s the code that created the first rectangle in Figures 10-2 to 10-6:

[image: Images]

The two lines of importance are the second and third, in which the position is either 0 or 1 (for the start and the end) and the two colors of #FFF (for white) and #000 (for black), which I will now change as follows, to create the rectangle shown in Figure 10-7:

[image: Images]

[image: Images]

FIGURE 10-7 This linear gradient smoothly changes from red to yellow.

[image: Images]

 I used both types of color values supported by the addColorStop() function; a hexadecimal string (in this instance three digits, but it could have been six), and a color name (in this case yellow).

Now let’s modify the gradient applied to the second rectangle used in the previous examples, by keeping it grayscale, but adding an additional stop point and color value:

[image: Images]

Here, in the second line, a very dark gray color with the value #555 has been applied at position 0.2, which is only 20 percent into the gradient. This forces the left 20 percent to quickly fade from #FFF to #555, and then the remaining 80 percent fades more slowly from #555 to #000, as shown in Figure 10-8.

[image: Images]

FIGURE 10-8 The first 20 percent of the gradient fades far more quickly than the final 80 percent.

You can include more stops if you like, and they can be any colors you like. So I have chosen to use a rainbow of colors for the third rectangle, like this, with the result shown in Figure 10-9:

[image: Images]

[image: Images]

FIGURE 10-9 A rainbow of colors is applied to the third rectangle’s gradient fill.

And remember that all these fills apply equally well to radial gradient fills, so I have chosen to reapply the same rainbow gradient used in the third rectangle to the fill in the final rectangle (but with a radius of 75 pixels to allow the circle to touch the top and bottom edges and show more of the fill), with the result shown in Figure 10-10.

[image: Images]

FIGURE 10-10 The rainbow gradient fill is applied radially to the final rectangle.

Using Patterns

In the final part of this lesson I’ll show you how to use patterns on an HTML5 canvas, which you can apply instead of a plain or gradient fill by simply modifying the details you pass to the fillStyle property, and using the same fillRect() or other fill functions.

The createPattern() Function

To create a pattern, you need to supply a pre-existing image such as a jpeg, png, or gif file, and the type of repetition to use when applying the fill, out of the following options:

 • repeat Repeat the image both vertically and horizontally.

 • repeat-x Repeat the image horizontally.

 • repeat-y Repeat the image vertically.

 • no-repeat Do not repeat the image.

For example, the following code loads in the image smiley-50.png and then uses it as a fill for the first rectangle:

[image: Images]

This code requires some explaining (especially if you are new to JavaScript). What is happening is that in the first line a new object called image is created using the JavaScript Image() function and the keyword new. This new object then has the value of its src attribute set to smiley-50.png, which is a file already saved into the same folder.

Then the onload event of the image has a function attached to it. But what does this mean? Well, the image object has various attributes such as its width and height, the source from where it is loaded and, in this instance, onload. However, the onload attribute is known as an event because it is handled in a special manner such that only when the image has been fully loaded from its source is the event called.

To handle the event when it is called, a function is attached that will access the canvas and do the pattern filling. Within the function (inside its curly braces), there are three lines of code, and here you should be back in familiar territory, because the first one is simply a call to createPattern() specifying the image object and a value of repeat, indicating how the image should be used, the result of which is placed in the new object called pattern.

The final two lines simply apply this pattern object to the fillStyle property and then call the fillRect() function to use that fill on a rectangle (whose top-left corner is at 10,10) and with a width of 90 pixels and height of 150 pixels. The result is shown in Figure 10-11.

[image: Images]

FIGURE 10-11 The rectangle has been filled with a repeating smiley image.

[image: Images]

 If the function is not attached to the image’s onload event, and the code is simply called from outside of the function, then you run the risk that the image may not be fully loaded when you make the call to the fill command, and therefore the call may fail. This is a standard issue with JavaScript and external images that you must always consider, and so wherever such an image is loaded in, you are recommended to attach the code that will use it to the onload event of the image.

In the figure you can see that the first smiley image is not fully within the rectangle. This is because the fill area is considered to be the entire canvas, and therefore the fill commences at the top left of the canvas (location 0,0), but is only revealed within the constraints of the fill area.

Using the value of repeat-x for the repetition results in Figure 10-12, repeat-y results in Figure 10-13, and no-repeat results in Figure 10-14.

[image: Images]

FIGURE 10-12 The rectangle has been filled only horizontally.

[image: Images]

FIGURE 10-13 The rectangle has been filled only vertically.

[image: Images]

FIGURE 10-14 Only a single instance of the image has been used for the fill.

Summary

At this point you already have substantial ability to work with the HTML5 canvas, and will be able to draw on these concepts in the following lesson, which moves on to writing text (including using gradients and pattern fills), drawing lines and curves, drawing with images, and more.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. Which function is used to create a filled rectangle?

 2. How can you change the fill color?

 3. How can you draw a clear rectangle?

 4. With which function can you draw a rectangular outline?

 5. How can you create a linear gradient?

 6. How do you create a radial gradient?

 7. How do you specify the colors in a gradient?

 8. With which function can you use an image for a pattern fill?

 9. What are the four different types of pattern fill?

 10. How do you ensure an image has been loaded before you use it?

[image: Images]

Writing Text to the Canvas

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

This lesson continues our exploration of the HTML5 canvas by looking at how you can write text to it, including using a variety of fonts and styles, as well as incorporating the various fill styles covered in the previous lesson.

Many of these examples draw on those in Lesson 10, so you may wish to refer back to that from time to time as you work your way through this one.

Writing Text

HTML 4.01 provides some handy tags for setting font sizes, colors, and faces, and CSS gives you even more control over how these are applied, including using effects such as shadowing. But when you want absolutely precise control over how your text should display, the canvas has what you need. Also, although you can use CSS to overlay text on top of a canvas, you can’t use it to layer text into a canvas, or to apply the gradient and pattern fill effects that the canvas supports.

The font Property

Let’s look at the font property first, and see how to select the font face to use. As ever, I am assuming that if you follow these examples yourself, you have also included the O() and S()functions and the code to create a 2D context on the canvas in an object with the name context. To recap, your code should look something like this:

[image: Images]

[image: Images]

The width and height of 410 by 170 pixels shown will be suitable for all the examples, and this code will create a light gray background behind the canvas so that its position and dimensions are clearly visible. You must place the O() and S() functions somewhere in your document within a <script> section for these examples to work.

So, first, let’s choose a font, like this:

context.font = ’72pt Arial’

And that’s it—when you write the text to the canvas, it will be in 72-point Arial.

Font Size Measurement Units

You can also use other measurement units for your font sizes, which can be either relative or fixed. Here’s the full list of supported relative font units:

 • em Ems: Based on the default preference set in the browser.

 • ex X-height: Based on the height of the lowercase x character.

 • px Pixels: Based on the resolution of the screen.

 • % Percentage (similar to em): Based on the default preference of the browser.

And the fixed units are:

 • in Inches: Imperial measurement.

 • cm Centimeters: Metric measurement equivalent to one 100th of a meter.

 • mm Millimeters: Metric measurement equivalent to one 10th of a centimeter.

 • pt Points: A print unit.

 • pc Picas: Another print unit.

Therefore the following examples are all valid:

[image: Images]

The strokeText() Function

Of course, you now need a way to write text in the newly selected font to the canvas, and you can do that using the strokeText() function, like this (which results in Figure 11-1):

context.strokeText(’Hello!’, 20, 120)

[image: Images]

FIGURE 11-1 Seventy-two-point outlined text displayed on an HTML5 canvas

And that’s how easy it is to get text onto a canvas. Simply set the font property to the font and size to use and then (for an outlined font) call strokeText(), passing the text to display and the location where the bottom-left corner of the text should appear by default, although you will see next how you can choose a different horizontal alignment with the textAlign property, and use the textBaseline property to specify the offset of the text relative to the vertical coordinate supplied.

The textAlign Property

But there’s more to writing text to a canvas than that because there are three properties you can pass values to that will further customize the way text appears. For example, using the textAlign property, you can specify the alignment of the text out of the values start, end, left, right, and center. So, to center some text, you could set the property like this:

[image: Images]

As you may have noticed, in order to properly center the text, the call to strokeText() needed its horizontal offset changed from 20 in the previous example to 205, because that is half the width of the canvas (which is 410 pixels wide), and the result is shown in Figure 11-2.

[image: Images]

FIGURE 11-2 The text is centered using the textAlign property

Incidentally, with the lineWidth property, you can also change the width of any line drawn using any of the line-drawing functions (more about these in Lesson 12), and this also includes strokeText(). The following line of code increases the width to five pixels, as seen in Figure 11-3, where the previous example has been modified to create a very thick border.

[image: Images]

[image: Images]

FIGURE 11-3 The border outline has been thickened to five pixels wide.

The textBaseline Property

When you draw text to the canvas, you must supply horizontal and vertical (x and y) coordinates for its top-left corner. Using the textBaseline property, you can choose the vertical offset (or y value) at which text will be displayed from this location.

 • top Aligns the top of the text to the y value.

 • middle Aligns the middle of the text to the y value.

 • bottom Aligns the bottom of the text to the y value.

 • alphabetic Aligns the alphabetic baseline of the text to the y value.

 • hanging Similar to top.

 • ideographic Similar to alphabetic.

Figure 11-4 illustrates using the first four preceding values for this property, as in the following lines of code, which write the word “top” using the textBaseline value of top. The hanging and ideographic values are offset by a tiny amount from top and alphabetic respectively—the best way to see whether you need these values is to try them for yourself.

[image: Images]

[image: Images]

FIGURE 11-4 Vertically aligning text using the textBaseline property

The fillText() Function

In the same way that you can use strokeText() in a similar fashion to strokeRect() (as detailed in the previous lesson), you can also use fillText() to create solid, gradient, and pattern-filled text, just as you can provide those types of fills to rectangles with the fillRect() function.

To show how this works, here’s some code to write the word HTML5 in a big and bold black color since no fill color has been specified (so the default of black is used), as shown in Figure 11-5:

[image: Images]

[image: Images]

FIGURE 11-5 A 116-point font filled in with the color black

Now let’s look at applying different colors, gradient fills, and patterns, starting by simply changing the text to blue, like this:

context.fillStyle = ’blue’

By now you should be so used to simple color changes that there’s no need to show the result of this in a figure. Instead let’s see how a simple vertical gradient works with the font (as shown in Figure 11-6), like this:

[image: Images]

[image: Images]

FIGURE 11-6 The solid fill has been replaced with a gradient.

[image: Images]

 As explained in the previous lesson, you can set the start and end point of the gradient to any locations within (or even outside of) the canvas, allowing you to create a wider variety of effects than if they were limited to simply applying it under the object being drawn.

Using the rainbow color gradient from the previous lesson but applying it creatively as a radial gradient allows the effect of a real rainbow to be applied as the fill effect, like this, which displays as Figure 11-7:

[image: Images]

[image: Images]

FIGURE 11-7 Creating a rainbow effect with a radial gradient

In this example, a vertical offset of 230 pixels from the top of the canvas was selected. This places the center of the radial gradients at a location 60 pixels below the bottom of the canvas. This allows only a top portion of the rainbow to be used for the fill. If you select radius values of 120 pixels for the inner gradient and 240 for the outer one, the rainbow is 120 pixels wide. However, due to the way the fill works, the areas inside and outside of this section are set to the initial and final color values, so that the inside is red and the outside is violet.

If this is not the effect required, it is a simple matter to surround the initial and final colors with white (or whichever colors you prefer), and make room for them by slightly adjusting the addColorStop values of the previous start and end colors, like this:

[image: Images]

As shown in Figure 11-8, this results in only the rainbow itself being displayed.

[image: Images]

FIGURE 11-8 The inside and outside areas have been set to white.

You can also use patterns with the fillText() function, as with the following code, which attaches a function to the onload event of an image object called image that uses a marble pattern from the file marble.jpg (to ensure that the code runs only after the image has fully loaded):

[image: Images]

The image is then processed using the createPattern() function with a setting of no-repeat, and passed to a new object called pattern. In turn, pattern is supplied as the value for the fillStyle property, which is then used to fill the text using the fillText() function. The result of this can be seen in Figure 11-9.

[image: Images]

FIGURE 11-9 The text has now been filled with a pattern.

In this instance the image used for the fill pattern is larger than the canvas, so there is no need to repeat (or tile) it. But if you have a smaller image that will tile well, you can repeat it horizontally, vertically, or in both directions. See Lesson 10 for more details on how to create and use patterns.

Determining Text Width

Sometimes you need to know how wide some text will be in order to best position it. To find out this value, set all the properties as you would before writing the text and then issue statements such as the following, which creates an object called metrics into which information about the text is stored.

As illustrated by the following example (see Figure 11-10), the width property of metrics then holds the width of the text in pixels, which is displayed by the JavaScript alert() function (which pops up a small window containing the string in parentheses following the alert function name, namely some text surrounding the width property):

[image: Images]

[image: Images]

FIGURE 11-3 Displaying the width of some text

The object returned by the measureText() function currently only supports the width property.

Summary

With creating text now in your toolkit, in the following lesson we will return to looking at some of the drawing tools, this time ones that use paths to create lines, so that you have fine control over all the straight lines, shapes, and curves you could want. And in the lesson after that, I’ll show you how you can use an image as a paintbrush, how to add shadow effects, and how to manipulate each and any of the pixels (individual dots) in a canvas.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. How do you choose the font for writing to a canvas?

 2. With which function can you write outlined text to a canvas?

 3. What are the relative measurement units supported by the canvas?

 4. What are the fixed measurement units supported by the canvas?

 5. Which function allows you to write filled text to a canvas?

 6. How could you center-align text on a canvas?

 7. Which text alignment values are supported by textAlign?

 8. How can you change the horizontal line about which text will be based?

 9. Which values are supported for altering this base line?

 10. How can you discover the width in pixels that a text-writing call will require?

[image: Images]

Drawing Lines, Paths, and Curves

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

In this lesson I’ll be showing you how you can customize all the functions that draw using lines, such as strokeRect() and strokeText() (which you’ve already seen), as well as the line-drawing functions, and how to use paths to create complicated patterns and curves. All example files used in this (and every other) lesson can be downloaded from 20lessons.com.

Drawing Lines

The HTML5 canvas supports line drawing using many different styles because you can precisely specify the width of lines with the lineWidth property (as you have previously seen), and can also set properties such as lineCap, lineJoin, and miterLimit.

The lineWidth Property

You previously encountered the lineWidth property in Lesson 11 where it was used to thicken the line width used in a call to the strokeText() function. What this property does is change the line width for future operations that use line drawing, including strokeText() and stroke() (detailed a little later).

For example, the following command sets the lineWidth property to 10 pixels, as seen in the horizontal and angled lines in Figure 12-1 (for comparison the thin, vertical lines in the figure are one pixel wide):

context.lineWidth = 10

[image: Images]

FIGURE 12-1 A selection of line types using different line caps and joins

The lineCap Property

Using the lineCap property, you can choose the way the starts and ends of lines are displayed. This is known as their line cap, and hence the lineCap property name, which can be any value out of butt, round, and square, as shown in the left half of Figure 12-1, and used like these examples:

[image: Images]

The top line on the left of the figure uses the lineCap value of butt in which the ends butt up exactly against the vertical lines I have drawn (for comparing the line cap types), indicating the start and end points of each line. If no value is given to the lineCap property, it assumes a default value of butt.

The middle line uses a lineCap property of round and, as you can see, it therefore extends past the left and right edges, with the center point of the rounded cap being the end points of the line.

The bottom line uses the value square for the lineCap property, which is almost the same as round, in that the centers of the squares are the end points of the line.

The lineJoin Property

The lineJoin property is similar to the lineCap property, but it applies only at the points at which lines are joined. It supports the values of round, bevel, and miter, as you can see by looking at the joins of the three right-hand pairs of lines in Figure 12-1, in which the end caps are the same as the lines on the left. Following are examples of setting this property:

[image: Images]

However, the top pair of lines uses the value round for the lineJoin property, the middle pair uses the value bevel, and the bottom one uses the value miter.

The miterLimit Property

In order to achieve the sharp miter in the bottom-right pair of lines in Figure 12-1, it was necessary to use the miterLimit property, giving it a value of 12, in order to allow the quite sharp angle to extend far enough. Here is how you would set this property:

context.miterLimit = 12

[image: Images]

 If miterLimit is not set to a sufficiently large enough value for a miter, then mitered joins will simply use the bevel value instead, so if you are having trouble with your miters, simply increase the value you supply for miterLimit until the miter displays.

Drawing with Paths

Figure 12-1 was created using a combination of line properties (as described in the previous section), along with a combination of path-handling functions. Using them, it is easy to move an imaginary pen to a start location, define a path it must follow, and then tell it to draw along that path using the properties already set up for it such as width, caps, joins, and color, as described next.

The beginPath() and closePath() Functions

Every path created for an HTML5 canvas must start with a call to beginPath(), and end with a call to closePath(), like this:

[image: Images]

Think of them as being like opening and closing HTML tags. Once a path is created, you can make it display, but first let’s look at how to create one.

The moveTo() and lineTo() Functions

The first step in a path is generally to move to a location on the canvas so, for example, to move to the location 20,20, you would issue this command:

context.moveTo(20, 20)

To then specify that a line should be drawn (once the path is completed), you can then issue a command such as the following, which will specify that the next part of the path is to draw a line from the current location 20,20 to 390,20:

context.lineTo(390, 20)

Let’s look at the path used to draw a rectangle, including the opening and closing path function calls:

[image: Images]

The stroke() Function

Once you have a path created, you can draw it on the canvas using the stroke() function like this, which in the case of the current example displays as Figure 12-2:

context.stroke()

[image: Images]

FIGURE 12-2 A rectangle drawn using a path

And there you have it. The path has been processed by the stroke() function and all the parts in the path are now drawn.

The rect() Function

If all you wanted to draw in the first instance was a rectangle, then there’s a quicker way to do this than defining an entire path. Instead you can use the rect() function with a path, like this:

[image: Images]

The top left-hand corner of the rectangle is specified by the first two arguments in the function call, and the second two contain the width and height of the rectangle. The end result is shown in Figure 12-3, in which both rectangles (from the previous and current examples) have been combined and created within the same path, as follows:

[image: Images]

[image: Images]

FIGURE 12-3 The two rectangles are created from a single path.

The fill() Function

Using the fill() function, you can fill in any area bounded by a path. For example, the following code creates a four-pointed star, which is then filled in, as shown in Figure 12-4:

[image: Images]

[image: Images]

FIGURE 12-4 Filling in a four-pointed star

If you don’t fully enclose the shape by drawing a line back to the start point, the function still does a very good attempt at filling only the shape by making that final link for you before performing the fill.

The clip() Function

When creating a path, you can choose to constrain the drawing area using the clip() function to select any area of the canvas, so that any part that would be drawn outside of this area will be ignored, and only parts of the path that fall inside the clipped area will be used.

The clip() function works on a path in the same way as the stroke() or fill() functions. For example, the following code creates a diamond-shaped path, which is then revealed with a simple call to stroke(), as shown in Figure 12-5, in which the diamond has been drawn over the star shape:

[image: Images]

[image: Images]

FIGURE 12-5 The diamond path is drawn on top of the star pattern.

However, by placing the diamond path before the star shape is drawn, and using the clip() function on it after the stroke() function, this path becomes a bounded area, outside of which future path-related functions cannot draw, as with the following code (the result of which is shown in Figure 12-6):

[image: Images]

[image: Images]

[image: Images]

FIGURE 12-6 The diamond is both drawn and used in a clip() call.

If you want to use a path for constraint only, and not actually draw it, simply omit the call to stroke() from the previous example, and the result is Figure 12-7.

[image: Images]

FIGURE 12-7 Only the star shape is drawn, constrained by the diamond area.

Or, perhaps you simply may wish to give the diamond shape a border, fill it with one color, and then fill the area of the star within that shape in another color, which is easily achieved by placing the relevant fillStyle assignments before the drawing commands, as shown in Figure 12-8. I’ll leave it up to you to work out how to achieve this effect—it’s very simple (or you can view the commented code in the accompanying example files, downloadable using the link at the start of this lesson).

[image: Images]

FIGURE 12-8 The diamond is filled, as is the portion of the star within it.

[image: Images]

 You may, of course, use any types of fill on a path as well as the solid color fills, including linear and radial gradients and patterns. Simply assign the relevant value to the fillStyle property before making a fill.

The isPointInPath() Function

Sometimes you need to know whether a particular point lies in a path you have constructed. However, you will normally only want to use this function if you are quite proficient with JavaScript. You will generally call it as part of a conditional statement, like this:

[image: Images]

If the location specified lies along any of the points in the path, the function returns the value true and the contents of the if() statement are executed. Otherwise, the value false is returned and the contents of the if() statement do not get executed.

Creating Curves

I leapt a little ahead of myself by showing you how to fill in and clip paths, but I wanted to show you some of the fun you could have with them and I couldn’t resist. So now (slightly out of order), here are some more path functions you can use, this time for creating arcs, circles, and complex curves.

As with the previous examples, all of these can be filled in with plain colors, gradient or radial fills and patterns, or you can draw curves using stroke functions and their associated properties such as lineWidth, lineCap, and lineJoin.

The arc() Function

Probably the simplest form of curve is the arc, which is simply a segment of the perimeter of a circle. To create an arc, you include it within a path with the start of the curve connected to the final point on the path previous to it, and the curve’s end connected to the next point in the path after it.

[image: Images]

 It is possible to create an arc without using the path functions, but a path will be assumed based on the previous and future drawing points, and these will connect up to it. So for precise control, I recommend always using it inside a path.

You must provide six arguments to the function: a pair of coordinates representing the center of the circle upon which the arc is based, the radius required, the radian offset value for the start of the arc, a radiant offset value for the end of the arc, and then a value indicating whether to draw the arc clockwise or counterclockwise. Let’s look at these in turn.

 • X and Y coordinates The coordinates for an arc are simply the horizontal and vertical offset from the top-left corner of the canvas for the center of the circle, such as 205,85, which is 205 pixels in from the left, and 85 pixels down from the top of the canvas.

 • Radius This is a value in pixels representing the distance from the center of the circle to its perimeter (or circumference). This is the location at which the arc will be drawn. For example, the value 75 states that the arc will be drawn at a distance of 75 pixels from the center of the circle.

 • Radian offsets These specify the start and end position on the circle’s perimeter between which the arc should be created. A value of 0 radians specifies the three o’clock position directly to the right of the circle’s center. A radian has the value 180 ÷ Δ (the equivalent of about 57 degrees), and so there are Π × 2 radians in a complete circle of 360 degrees. This means that to draw a quarter circle (for example), from the three o’clock to six o’clock positions, you would use an initial value of 0 radians, and a second value of Δ ÷ 2 radians. For a semicircle, the second value would be Δ radians, and for a circle it would be Π × 2 radians. Remember that Π is the number of times the diameter of a circle fits into its circumference (or about 3.1415927 in decimal).

 • Direction To create a clockwise arc, the final argument must have a value of false, which is the default value if you omit this argument. For a counterclockwise arc, it should be true.

So, for example, the following code draws four segments of a pie, with the final one filled in using the fill() function, rather than drawn using the stroke() function, as shown in Figure 12-9:

[image: Images]

[image: Images]

FIGURE 12-9 Arcs created with the arc() function

Math.PI is a convenient way to refer to the value of Π using JavaScript. The first image in the figure uses radian values of 0 and Math.PI / 2, the second image, uses 0 and Math.PI, the third image, uses 0 and Math.PI / 2 * 3, and the fourth image uses Math.PI * 2. In each case, a call to moveTo() moves the path starting point to the center of the circle, then the next point in the path is the start of the arc, followed by the arc’s end, and then the initial starting point again. By doing this, a slice of the circle is created to clearly show the arcs. In the final image the fill() function was used to illustrate how you can use that instead of stroke() if you wish, as well as the linear, gradient, and pattern fills.

If you wish to draw only the arc portion of the images in Figure 12-9, then you need to close the path after issuing the call to the stroke() function, and you do not need to first move the path start to the center of each circle. So you could use code such as this (which results in Figure 12-10):

[image: Images]

[image: Images]

FIGURE 12-10 Only the arcs are now drawn.

For this example, I chose not to fill in the final circle so you can see how to draw a complete, outlined circle. Remember too that you can change the stroke width and other properties by assigning the relevant values to the strokeStyle property.

If you wish to draw the arcs in a counterclockwise direction, you can change the final argument in the call to arc() to true. The result is shown in Figure 12-11, in which you will note that you always get a full circle for image four, regardless of the direction of drawing.

[image: Images]

FIGURE 12-11 Drawing the arcs in a counterclockwise direction

The arcTo() Function

There’s another way you can draw an arc, which is to use the arcTo() function, which draws a curve based on the current location the path has reached, and arguments that you supply to it representing a pair of imaginary tangent lines touching the circle’s perimeter.

For example, let’s assume that the current path position has been achieved using a moveTo() call, like this, which places the start position of the path at the bottom-left corner of the canvas:

[image: Images]

Now a curve can be created with its start point at this location and an end point at location 170,0, like this:

context.arcTo(0, 0, 170, 0, 170)

So, we have the start point of 0,170 from the moveTo() call, and end point of 170,0 being the third and fourth arguments to arcTo(), but what about the first two and final arguments in the arcTo() call?

Well, the first two arguments of 0,0 in the arcTo() call represent the end point of an imaginary tangent line starting at 0,170 and ending at 0,0. Then the third and fourth arguments (as well as being the end point for the arc) represent the end of a tangent line drawn from 0,0 to 170,0.

The points where these two tangents meet the circle’s circumference are the arc’s start and end points and, because a tangent must always be at a right angle to the radius of a circle, the arc to create can now be calculated. Let’s see how this works by first drawing the imaginary lines, with the following code, as shown in Figure 12-12:

[image: Images]

[image: Images]

FIGURE 12-12 Two lines have been drawn, which are tangential to the circle.

The first line sets a green color to differentiate from the arc that will be drawn in a moment. Then a simple path is created to draw the two lines, which are simply to show where the imaginary tangents would be if they were displayed, so the preceding code is only for illustrative purposes. The arcTo() code is as follows, and results in Figure 12-13:

[image: Images]

[image: Images]

FIGURE 12-13 The arc has connected the end points of the pair of tangents.

Figure 12-13 also serves to illustrate the purpose of the final argument to the arcTo() function, which is the radius of the circle on which the arc is based. In this example the two tangents are sides of a square (at 90 degrees to each other), and the arc is a quarter circle with a radius of 170 pixels (whose origin—or center—is therefore at location 170,170).

[image: Images]

 If this function baffles you, try playing with the examples on the companion website (at 20lessons.com), and you’ll soon come to grips with how these tangents work.

The quadraticCurveTo() Function

In addition to arcs, you can even create the most fancy of curves using the function quadraticCurveTo(), which employs an imaginary attractor object that pulls the curve towards it. For example, let’s draw a line between the left and right side of the canvas using a simple stroke() call, like this (as shown in Figure 12-14):

[image: Images]

[image: Images]

FIGURE 12-14 A simple horizontal line

Now let’s draw a curved line between these positions, but with an imaginary attractor up in the top left-hand corner, at location 0,0, like this (and shown in Figure 12-15):

[image: Images]

[image: Images]

FIGURE 12-15 A curve has been created using an imaginary attractor.

As you can see from the figure, the entire curve has been pulled toward the attraction point as if the curve were made of an elasticized magnetic material being attracted toward a magnet. The further up the attractor is placed, the higher the curve will be pulled. Similarly, if the attractor is moved to the left or right, then the attraction will also move in that direction.

[image: Images]

 Sometimes it takes a little trial and error to get just the curve you need, but you should soon get the hang of this function.

The bezierCurveTo() Function

If you thought quadratic curves were funky, then wait till you check out Bézier curves. These are similar but support the use of two imaginary attractors, which can be placed anywhere on (or off) the canvas.

For an example, let’s adapt the previous example to add a second attractor at the bottom-right corner of the canvas by replacing the call to quadraticCurveTo() with one to bezierCurveTo(), like this (resulting in Figure 12-16):

[image: Images]

[image: Images]

FIGURE 12-16 This curve has two imaginary attractors.

[image: Images]

 Since you can place the pair of attractors anywhere you like (not necessarily at opposites sides of the curve), you can create any curve that is possible to draw using Bézier curves, although trial and error may again be required.

Summary

You now have all the line, curve, and path tools added to your toolkit. Remember that you may create as complicated and lengthy paths as you like, and you are not limited to the small snippets of examples I have shown you in this lesson. When your code is properly implemented, you can create sketches and logos, or use the functions as part of a design program you can write in JavaScript.

In the following lesson I’ll continue our journey into the vast resource that is the HTML5 canvas by showing you how to write on the canvas using images, how to apply shadows, and even manipulate pixels directly.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. With which property can you change the width of line drawing on the canvas?

 2. How can you change the way lines start and end, and the way lines join to each other? And how can you extend the limit of mitered line joins?

 3. How do you start and end a path?

 4. How do you move the drawing position of a path without creating a line?

 5. How do you create a line within a path?

 6. Which functions apply a path to the canvas as a line, and as a filled area?

 7. Which functions draw an outlined rectangle, and a filled rectangle?

 8. With which function can you create all or part of a circle?

 9. How can you create an arc from one point to another based on imaginary tangents?

 10. How can you create a curve that is modified by an imaginary attractor? And two imaginary attractors?

[image: Images]

Manipulating Images, Shadows, and Pixels

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

In this lesson I’ll begin to look into the more advanced aspects of the HTML5 canvas, including drawing using images, adding shadows, and even directly manipulating the pixels (individual dots) of the canvas by their constituent primary colors of red, green, and blue, and their transparency too.

Using Images

On top of all the other drawing functions available to you for manipulating the HTML5 canvas, you have also seen how you can import an image to use as a fill pattern. In fact, you can also use images to draw directly on the canvas.

The drawImage() Function

Using the drawImage() function, you can load in an image such as a jpg, gif, or png, and draw it directly on the canvas, like this code, which draws it with its top-left corner at location 10,10, as displayed in Figure 13-1:

[image: Images]

[image: Images]

FIGURE 13-1 An image is loaded in and placed on the canvas.

As you will recall from previous lessons, the onload event of the image object is attached to a function, whose code is executed only when the image has been fully loaded. If this were not the case, the image might not display.

In this instance only the first three parameters the function accepts have been used. These are the image to use and the horizontal and vertical location at which it should be displayed, so the image is displayed full size. However, it is also possible to resize the image before it is placed on the canvas by passing additional arguments, as with these two examples (with the resizing values highlighted in bold), the result of which is shown in Figure 13-2:

[image: Images]

[image: Images]

FIGURE 13-2 Two copies of the reduced image have been added.

Here the image has been reduced to just under a quarter of its original size by more than halving its dimensions, and then two copies have been placed alongside the original, one above the other. This version of the function call takes arguments in this order: the image to display, the horizontal and vertical location to display it, and the width and height to use for displaying it.

[image: Images]

 When using rescaling on an image, you may not always get the sharpest anti-aliased results you could otherwise achieve by first resizing them in a graphics program. However, the results aren’t bad and they are fast, and if you understand writing loops in JavaScript, you can even use them for animation.

But, as they say in the infomercials, there’s more. Not only can you resize an image down, you can resize it up too. What’s more, you can also choose which area of the image to use when doing so, and you are therefore not restricted to using the entire image.

For example, the original html5.png image used in these examples has dimensions of 132 by 150 pixels. Using the following line of code, a rectangular subsection of this image has been selected, enlarged, and placed to the right of the two smaller images, as shown in Figure 13-3:

context.drawImage(image, 23, 26, 86, 98, 224, 10, 118, 150)

[image: Images]

FIGURE 13-3 The image has been cropped and enlarged before use.

You must be wary when using this version of the function call because, rather than adding parameters to the existing ones, four new arguments are inserted between the image argument and the ones in the previous examples. For example, in this instance the first four numeric arguments of 23, 26, 86, and 98 are two pairs, the first of which is the location of the top-left corner of the part of the image to crop, and the second pair are the width and height for the crop.

These values result in clipping out the number 5 from the image. Then the remaining four values are the same as in the previous examples. They are the horizontal and vertical location at which to place the cropped image, and the width and height to use for displaying it.

Using the Canvas as a Source Image

You are not restricted to using only external images within a canvas because you can copy sections of the canvas itself and write them back to it, even after cropping and/or reducing or enlarging them.

For example, in the following code the left half of the canvas is captured, reduced in size, and copied to the top right of the canvas, as shown in Figure 13-4:

context.drawImage(canvas, 10, 10, 205, 150, 352, 10, 48, 35)

[image: Images]

FIGURE 13-4 A portion of the image has been grabbed and reused.

This code works by referring to the canvas object in the first argument, rather than one for an external image. As you can see, the reduced images are looking quite jagged now, so it’s probably worth doing your own resizing in an editor for major changes like this, although, as I previously mentioned, as part of an animation or transition effect, this function works just great.

[image: Images]

 The HTML5 specifications also call for being able to use an HTML video element for drawing on a canvas, but this doesn’t seem to work on any of the browsers I have tested it with. Hopefully this feature will be operational soon as it would be really useful. In the meantime, if you are skilled with JavaScript, there are more complicated ways you can google to find out how to place video on a canvas.

Adding Shadows

The HTML canvas supports the addition of a shadow to any element that you draw on it with the use of a group of four properties you can set to specify a vertical and horizontal offset, the shadow blur, and its color, as follows:

 • shadowOffsetX The horizontal offset in pixels that the shadow should be shifted to the right by (or to the left if the value is negative).

 • shadowOffsetY The vertical offset in pixels that the shadow should be shifted down by (or up if the value is negative).

 • shadowBlur The number of pixels over which to blur the shadow’s outline.

 • shadowColor The base color to use for the shadow. If a blur is in use, this color will blend with the background in the blurred area.

For example, in the following (somewhat longer than usual) example code, four elements are drawn on the canvas using slightly different shadow properties, as shown in Figure 13-5.

[image: Images]

[image: Images]

[image: Images]

FIGURE 13-5 A variety of elements using different shadow properties

I used a variety of elements in this example as they illustrate a number of different points. So let’s look at them in turn, starting with the HTML5 logo.

The first thing you may notice with this image is that, unlike the other external images, this one doesn’t have a colored background but, instead, features a transparent one. Note how the shadow properties make use of this and draw the shadow only around the nontransparent areas. This image also has the largest shadow set, with vertical and horizontal offsets and a blur area of eight pixels, and the background color used for the shadow is black (#000).

The following three external images all have white backgrounds and so the shadow forms around the outside edges of each image. In turn these images use shadow offsets and blur areas of six, four, and two pixels respectively. At the same time the background color for the shadow uses increasingly lighter shades of gray (#333, #666, and #999).

The word “Hello” is drawn in blue, 38-point Arial text, has a vertical and horizontal shadow offset of three pixels, and a blur area of five pixels. See how the shadow lifts it from the background.

Finally, the rectangle uses a line width of three pixels and is drawn in red. The shadow offsets are both 0 but the blur area is six pixels, and black (#000) has been used for the shadow background color. This makes the shadow appear both inside and outside the rectangle.

[image: Images]

 The rectangle at the bottom right of Figure 13-5 illustrates how you can create inner shadows, which aren’t directly supported by the HTML5 canvas. Simply draw an object and specify a shadow that will appear inside that shape. Then draw another shape to cover over the outside shadows in the places where you don’t want them. Alternatively, it may be easier to simply create a clipped area using the clip() function, to prevent any drawing such as the shadows from being made outside of this area. If you do so, remember to reset the clipped area back to the entire canvas when you’re done.

Pixel Editing

We’ve now covered just about every conceivable drawing tool you could want for getting creative with the HTML5 canvas, but there’s one more trick remaining in the magician’s hat, and that’s direct pixel editing.

Using the getImageData(), putImageData(), and createImageData() functions, in conjunction with the data[] array, you can directly manipulate the canvas at pixel level, even down to the red, green, blue, and transparency constituents of a pixel.

The getImageData() Function

Let’s start by creating an image on a canvas (as shown in Figure 13-6) and then grabbing a portion of it with getImageData(), like this:

[image: Images]

[image: Images]

[image: Images]

FIGURE 13-6 An image has been loaded, placed on the canvas, and copied.

This code uses the usual technique of loading in an image and then attaching a function to its onload event so that the code in the function is called only when the image is fully loaded. Within the function the image is then drawn on the canvas so that it takes up its left half. The final line then creates an object called imagedata by grabbing information from the canvas starting at location 0,0 and with a width of 205 and height of 170 pixels.

At this point the image data that constitutes the left half of the canvas is now loaded into the imagedata array and it can be accessed from JavaScript to read or write its pixel data. This is done using the data[] array, which is a property of imagedata.

The data[] Array

The canvas element supports millions of colors (as well as transparency) for each pixel, and these are managed by allocating four locations per pixel for its red, green, blue, and alpha (transparency) components, each accepting a value of between 0 and 255. These locations are stored contiguously in the data[] array so that the pixel at the top left of the canvas (at location 0,0) can be accessed as follows:

[image: Images]

Therefore the pixel one to the right of this at location 1,0 can be accessed like this:

[image: Images]

Once the end of the first row of pixels is reached, the array continues with the next line. So, for a 205-pixel-wide section (such as the one grabbed in this example), there are 4 × 205 locations (or 820) on each row. Therefore the pixels at location 204,0 are accessed like this:

[image: Images]

And the pixels at location 0,1 are accessed as follows:

[image: Images]

Or, if you don’t mind using JavaScript expressions, you can address the array using code such as the following, where the JavaScript variables x and y contain the pixel to reference, and w is the width of the area in pixels × 4:

[image: Images]

The putImageData() Function

So let’s use the previous information to convert the image data grabbed from the left half of the canvas into grayscale, by averaging all the color values and setting them to the same value in each pixel. For example, if a pixel displays as yellow, which is a combination of red and green (color string #FFFF00), then we add up the FF, the FF, and the 00 to get a value of 1FE in hexadecimal (or 510 decimal, since FF hexadecimal is 255 in decimal, and twice that is 510).

Next, that value is divided by 3 (the number of different component colors) to return the value AA (or 170 in decimal), which is then assigned to all components of the pixel as the hexadecimal color #AAAAAA. Therefore the average brightness value of the color yellow (#FFFF00 in hexadecimal) is a gray tone with the value #AAAAAA, in which each color component has a value of AA in hexadecimal, or 170 in decimal.

Let’s look at some code to do this for the pixel at location 0,0:

[image: Images]

The variable average now contains the average value of the red, green, and blue components of the pixel’s color. In this instance the fourth constituent of the pixel (which is the transparency) is being ignored.

Assuming that all the pixels in the imagedata object’s data[] array have been averaged in this manner, the updated image data can now be written back to the canvas like this, as shown in Figure 13-7 (although you won’t see much difference when viewing this page in monochrome):

context.putImageData(imagedata, 205, 0)

[image: Images]

FIGURE 13-7 The left half has been copied, grayed, and pasted back to the right.

Following is the code that was used to perform this transformation. Be warned, though, that you may find it a little complicated, and use of techniques such as this is recommended only if you have an understanding of JavaScript programming:

[image: Images]

[image: Images]

By simply adding an extra line after the three lines of code that calculate the average, you can change the transformation to create a negative grayscale image, by subtracting the value in average from the hexadecimal value FF (255 in decimal), like this:

average = 0xFF - average

What this does is change the value 1 to 254, 17 to 238, 255 to 0, and so forth, inverting the image, as shown in Figure 13-8.

[image: Images]

FIGURE 13-8 The image data is averaged, inverted, and pasted back.

You can do other things too, such as changing the overall brightness of the image instead of inverting it, for example, by using this line instead, which adds hexadecimal 50 (80 in decimal) to each color component, as displayed as Figure 13-9.

average + = 0x50

[image: Images]

FIGURE 13-9 The grayscaled image has been lightened.

As you can see, once you have access to this data in the data[] array of the imagedata object, you can perform all manner of transformations on it. For example, you can mirror or flip the image, use matrixes (an advanced programming concept) to sharpen or blur the image, and so on. In fact, with a little ingenuity, you can do many of the things a professional graphic editing program like Photoshop can do.

[image: Images]

 For security reasons, some browsers will not allow examples such as the preceding to directly modify data this way unless they are served from a web server. That means the examples may not work on some browsers if you simply load them in from a file system for testing. Instead ensure you load them using a server domain name, or http://localhost for a local server.

The createImageData() Function

You don’t have to create an imagedata object directly from a canvas. You can simply create a new one with blank data by calling the createImageData() function, like the following, which creates an object with a width of 320 and height of 240 pixels:

imagedata = createImageData(320, 240)

Alternatively, you can create a new object from an existing object, like this:

newimagedataobject = createImageData(imagedata)

It’s then up to you what you do with these objects to add pixel data to them, and how you paste them on the canvas or create other objects from them.

Summary

You now have all the basic HTML5 canvas skills in your toolkit, but there are a few more advanced features yet to come, all of which are covered in the final lesson of this part of the book. In it you’ll learn about compositing, transparency, and transformations, which you can use to create just the professional touch you need in your canvases.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. Which function is used to draw an image to the canvas?

 2. How can you resize an image when it is drawn?

 3. How can you ensure that an image is ready for use before drawing?

 4. How can you easily copy one portion of a canvas to another?

 5. Which four properties are used to add and modify shadows underneath drawn objects?

 6. How can you grab all the pixel data from an image into a form that is editable?

 7. Once image data has been grabbed from a canvas and placed in an object, what sub-object of that object contains the actual data?

 8. What are the four components of each pixel?

 9. Which function is used to write image data to the canvas?

 10. How can you create a new object containing blank image data?

[image: Images]

Compositing, Transparency, and Transformations

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

In this final lesson on the HTML5 canvas, I show you how to use the remaining advanced graphical features not yet introduced, including compositing, transparency, and transformations, as well as how to save and restore context between operations.

Compositing and Transparency

Compositing is the method used for placing an element on the canvas, and there are 12 different available types, which have the effect of placing new elements in front of or behind existing ones, only on top of an existing element, never over an existing element, and so forth.

This is achieved using a property called globalCompositeOperation, providing it with the required value for the compositing you require.

The globalCompositeOperation Property

This property drastically affects the way new elements are added to the canvas. It supports 12 different values such as source-over, which is the default, and is applied like this:

context.globalCompositeOperation = ’source-over’

Following is a breakdown of all 12 types and the way they work. You should read them in conjunction with looking at Figure 14-1, which displays an example of each type:

 • source-over The default. The source image is copied over the destination image.

 • source-in Only parts of the source image that will appear within the destination are shown, and the destination image is removed. Any alpha transparency in the source image causes the destination under it to be removed.

 • source-out Only parts of the source image that do not appear within the destination are shown, and the destination image is removed. Any alpha transparency in the source image causes the destination under it to be removed.

 • source-atop The source image is displayed where it overlays the destination. The destination image is displayed where the destination image is opaque and the source image is transparent. Other regions are transparent.

 • destination-over The source image is drawn under the destination image.

 • destination-in The destination image displays where the source and destination image overlap, but not in any areas of source image transparency. The source image does not display.

 • destination-out Only those parts of the destination outside of the source image’s nontransparent sections are shown. The source image does not display.

 • destination-atop The source image displays where the destination is not displayed. Where the destination and source overlap, the destination image is displayed. Any transparency in the source image prevents that area of the destination image being shown.

 • lighter The sum of the source and destination is applied such that where they do not overlap they display as normal, but where they overlap, the sum of both images is shown, but lightened.

 • darker The sum of the source and destination is applied such that where they do not overlap they display as normal, but where they overlap, the sum of both images is shown, but darkened.

 • copy The source image is copied over the destination. The destination image is ignored.

 • xor Where the source and destination images do not overlap, they display as normal. Where they overlap their color values are exclusive ored.

[image: Images]

FIGURE 14-1 The 12 different compositing types

[image: Images]

 Compositing can be really tricky to get right, so my advice is to use trial and error, and you may prefer to choose a compositing type based on the examples shown in Figure 14-1, rather than on the descriptions given here.

The globalAlpha Property

When drawing an element to the canvas, you can choose how much transparency to give it by providing a floating-point value to the globalAlpha property of between 0 and 1 inclusive, with 0 signifying no transparency, 1 being totally transparent, and (for example) 0.5 being half transparent, and so on, like this:

context.globalAlpha = 0.5

In Figure 14-2 a value of 0.5 has been applied to the globalAlpha property of the previous compositing example by adding the preceding line of code.

[image: Images]

FIGURE 14-2 These elements have been drawn using 50 percent transparency.

Using Transformations

There are four functions available for applying transformations to elements when drawing them to the HTML5 canvas. They are: scale(), rotate(), translate(), and transform(), and with them, if your element is not quite at the right angle, the correct size, or at the right perspective, you can tweak it until you get it just right.

The scale() Function

As you’ve already seen, there are various ways you can scale different objects, such as by specifying the width and height at which to draw them on the canvas. But you can also use the scale() function to apply a global scaling factor to all future elements drawn on the canvas, like the following, which sets the scaling of horizontal dimensions to 1.8 times, and vertical to 1.5 times the original size:

context.scale(1.8, 1.5)

Let’s look at this in practice with the following code, which draws a rectangle, increases the scaling factors, and then redraws the rectangle, as shown in Figure 14-3:

[image: Images]

[image: Images]

FIGURE 14-3 Two identical strokeRect() calls display differently due to scaling.

To help show the difference between the rectangles, the original (smaller) one is displayed in red, and the second (larger) one in blue. The arguments used in the parameters to the calls for drawing the rectangles are identical to each other, but the scale() call between the two ensures that the second rectangle is 1.8 times wider and 1.5 times deeper.

As well as modifying the dimensions, this scaling is applied to the origin of the rectangles (their top-left corners), and so the larger one is offset to a location 1.8 times the original rectangle’s horizontal offset of 20 pixels (to a new coordinate of 36), and 1.5 times the original vertical offset of 20 pixels (to a new coordinate of 30). Thus the new origin for the larger square is at location 36,30, rather than 20,20.

Here’s an example of using the scale() function more than once on the same rectangle (but changing the colors so you can see the difference), as shown in Figure 14-4:

[image: Images]

[image: Images]

[image: Images]

FIGURE 14-4 The same rectangle scaled up three times

[image: Images]

 In this lesson I have selected colors that are reasonably different to each other when viewed in greyscale (as with the print version of this book). You can easily tell which grey represents which color, by comparing the example source code for each figure with the image.

The save() and restore() Functions

After drawing elements using a changed scaling, if you then wish to draw some using their original dimensions, you’ll need to issue the correct scale() call with negative values to get the scaling back down to a ratio of 1:1. But in the preceding example where the scaling ratio was increased upward three times, you would have to reduce the scaling ratio back three times by using values lower than 1 that achieve the same amount of reduction, like this (where 0.625 is the inverse of 1.6):

[image: Images]

Obviously, this is somewhat fiddly in that it involves calculating the inverse value, and also repeating a function call unnecessarily. Or, you could calculate the full inverse value for a single call to scale(), which happens to be 0.24414 (arrived at by multiplying 0.625 by itself three times), like this:

 context.scale(0.24414, 0.24414)

But there’s a much simpler method for returning the scale to the default (along with many other properties too), and that’s to issue a call to save() before making any changes to properties or calling functions such as scale(), and then calling restore() afterward to reset all the properties to the way they were, like this code, which uses the functions to restore the scaling before drawing a final rectangle in orange on top of the very first red one, as shown in Figure 14-5:

[image: Images]

[image: Images]

[image: Images]

FIGURE 14-5 The scaling is saved, and then restored for a final rectangle.

As well as the scaling ratio, several other properties are saved and restored by these functions, as follows:

 • fillStyle

 • font

 • globalAlpha

 • globalCompositeOperation

 • lineCap

 • lineJoin

 • lineWidth

 • miterLimit

 • shadowBlur

 • shadowColor

 • shadowOffsetX

 • shadowOffsetY

 • strokeStyle

 • textAlign

 • textBaseline

 • scale() properties

 • rotate() properties

 • translate() properties

 • transform() properties

This process of using save() and restore() is known as saving and restoring the drawing context. You can call the save() method as often as you like and each time the current context will be saved. For each call to save, you can issue a matching restore() call to return the context to the previous state. This enables you to save the state as you perform more steps and then “unwind” the state backward as each step completes.

The rotate() Function

Before applying an element to a canvas, you can also rotate it to just the right angle with a call to rotate(), like this:

context.rotate(Math.PI / 2)

The value passed to the function is in radians, each of which has a value of 180 ÷ Π (or about 57.3 degrees). There are Δ × 2 radians in a complete circle.

Radians are a sensible unit of measurement because Π ÷2 radians is a quarter circle Π radians is a half circle Π × 3 ÷2 radians is three-quarters of a circle, and Π × 2 radians is a full circle. I leave it to you to calculate other values you might require, but generally you will need to only use fractions and multiples of Π, whose value you can get by using the JavaScript property of Math.PI.

Therefore the previous example line will rotate all future elements placed on the canvas by a quarter turn (or 90 degrees). Here’s an example in action, as seen in Figure 14-6, in which a square has been rotated nine times:

[image: Images]

[image: Images]

FIGURE 14-6 A square is rotated nine times.

Because the rotate() function is called prior to each call to fillRect(), the rotation factor is increased for each one. The place around which the rotation takes place is the origin of the canvas, at location 0,0.

Working with Degrees

If you prefer working with degrees rather than radians, you can convert degrees to radians using the formula radians = degrees × 0.01745324 (because 0.01745324 is Π ÷180). For example, if you want a quick way to supply a value of 90 degrees to a function that requires radians, just pass the expression 90 * 0.01745324 as the argument. Or you can create a function to do this to JavaScript’s maximum level of accuracy, like this:

[image: Images]

Then (for example) just supply the expression degToRad(90) to the function.

The translate() Function

If you prefer to rotate an object around another axis such as its center, you need to also call the translate() function to move the origin of the canvas to a new location, around which the elements can rotate, like this line for example (which sets it to the coordinates 100,100):

context.translate(100, 100)

Let’s use this in a simple example similar to the previous one, but in which the squares will rotate around their centers, like this (as shown in Figure 14-7):

[image: Images]

[image: Images]

[image: Images]

FIGURE 14-7 Five squares are rotated and overlaid on each other.

If you look closely at the code in this example, you’ll see some negative values. This is because the origin of the canvas is no longer at location 0,0—it has been translated to the location 280,85. Therefore all function calls that address the canvas must now bear this new origin in mind and, since the squares are 120 pixels wide and deep, to place their centers over the new origin position, they must be located at a point relative to the origin of -60,-60.

[image: Images]

 After translating the origin of the canvas, you may wish to restore it to 0,0 for future access of the canvas, or you can use the save() and restore() functions in appropriate places to automatically restore the context.

The transform() Function

Finally, in this part of the book on the HTML5 canvas, comes the most complicated and possibly the most powerful feature of all, the transform() function, with which you can stretch and transform elements in many different ways using matrixes.

Interestingly, the previous functions that manipulate elements all actually use matrixes to achieve their effects, and you can do the same yourself using the transform() method to either emulate or improve the built-in functions, or create your own new transforms. For example, you can emulate the scale() function by issuing the following command:

context.transform(1.6, 0, 0, 1.6, 0, 0)

This is equivalent to the following call because the first and fourth parameters represent the horizontal and vertical scaling respectively:

context.scale(1.6, 1.6)

Here’s some code using the function that first draws a 50×50-pixel square in green, then applies a scaling factor of 2 in the horizontal direction and 1.5 vertically and redraws the same square, as shown in Figure 14-8.

[image: Images]

[image: Images]

FIGURE 14-8 The original square is redrawn with scaling of 2 and 1.5.

This is the same as using the following command:

context.scale(2, 1.5)

The second and third parameters to the transform() function control shearing of the element. For example, to shear the original square downward (and not use any scaling), you could issue a command such as this:

context.transform(1, 0.7, 0, 1, 0, 0)

To shear to the right, you might use a command like this:

context.transform(1, 0, 0.7, 1, 0, 0)

And to shear in both directions, you might use a command such as this:

context.transform(1, 0.7, 0.7, 1, 0, 0)

In fact, here’s some example code that illustrates all three of these shears at once, as shown in Figure 14-9:

[image: Images]

[image: Images]

FIGURE 14-9 Three different shears have been applied to the square.

The first section of code creates the initial square. Then save() and restore() are used for the following sections to ensure the context is returned for reuse after each. In the first transform() call, the bottom-left shape is created. The top-right one is created next, and then the bottom-right shape is created out of a combined horizontal and vertical shear.

[image: Images]

 You may use different values than 0.7 in these functions, and that includes negative values to shear in the other direction.

The final two arguments to the function are the horizontal and vertical offset to apply to the element when it is drawn on the canvas. These may be negative as well as positive values. Therefore the following three lines of code modify the transform() calls in the previous example to move the bottom-left shape to the left by 30 and down by 20 pixels, the top-right shape to the right by 20 and up by 30 pixels, and the bottom-right shape both down and to the right by 25 pixels, as shown in Figure 14-10:

[image: Images]

[image: Images]

FIGURE 14-10 The sheared shapes have been offset away from the original.

The setTransform() Function

As well as using the save() and restore() functions, you can reset the transform matrix at any time by issuing this call:

context.transform(1, 0, 0, 1, 0 0)

Then you are ready to issue a new transform of your choosing, like this, for example:

context.transform(1, 1.2, -1.2, 1, -20, 20)

However, rather than issuing two separate calls, you can make just one call to the setTransform() function instead. This has the effect of resetting the transform matrix and then applying the requested new transform. So, in place of the two preceding calls, for example, you can simply make the following call:

context.setTransform(1, 1.2, -1.2, 1, -20, 20)

[image: Images]

 For more information about transformation matrixes, there’s a comprehensive article at: wikipedia.org/wiki/Transformation_matrix.

Summary

This concludes your introduction to the world of the HTML5 canvas. I hope you have found it enlightening and will use the functions it provides to create some weird and wonderful and compelling web pages. In the next lesson we’ll move on to seeing how a browser can identify your location, and what you can use this information for.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. With which property can you change the type of compositing used to draw to the canvas?

 2. How can you set the transparency of future drawing operations?

 3. Which function lets you change the scale for future drawing operations?

 4. How can you easily resume previous settings after changing the scaling one or more times?

 5. Which function lets you rotate the angle of future drawing operations?

 6. How many radians are there in 360 degrees?

 7. How can you move the origin of future drawing operations from its default location at 0,0?

 8. What is the procedure to rotate an object around its center before drawing it to the canvas?

 9. With which function can you scale, rotate, and skew, all at the same time?

 10. Which function can you use to create absolute transformations (as opposed to relative ones from the current transform settings)?

PART III

Advanced HTML5

[image: Image]

[image: Images]

Supporting Geolocation

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

With the incredible rise in popularity of smartphones, the ability to determine the location of a device has become almost essential, particularly for running interactive maps and navigation software, and even for finding local Wi-Fi hotspots, or services such as restaurants or cash dispensing machines, and so on.

Geolocation is also being used more and more to try to sell you services by offering promotions in stores that are near to you, and a little more benevolently in enabling you to know whether friends or acquaintances are within your near vicinity. Thankfully, you are in control of when you allow your location information to be revealed, so you can minimize any privacy or security risks the technology could create.

In this lesson I will show you how to use JavaScript to determine the location of any geolocation-enabled device, as long as the user allows you.

Accessing Geolocation with JavaScript

There are no two ways about it; many of the HTML5 features are so advanced that they cannot be accessed by simple HTML. Instead you do have to learn a little JavaScript.

So far in this course I have done my best to teach you only the fewest parts of JavaScript you need in order to work through the examples. And the same goes for this lesson. However, there is no substitute for getting a good book (such as my book JavaScript: 20 Lessons for Successful Web Development) or taking a course on JavaScript, if you wish to make full and professional use of features such as geolocation.

The geolocation Property

The first thing you must do when accessing geolocation is to determine whether or not it is available by testing the geolocation property, like this (preceding the property with the navigator object name):

[image: Images]

This code uses a JavaScript if() statement in which the first part of the code is executed if geolocation is not supported. Typically you will inform the user that their browser doesn’t support geolocation, provide some other kind of message, or perhaps simply do nothing. In this instance I have chosen to pop up an alert() message window with a short message.

If geolocation is supported, the part of code after the else statement is executed, and that’s where your code that uses the geolocation information goes, as follows.

The getCurrentPosition() Function

Once you know that a browser supports geolocation, you may ask it for its current position using the getCurrentPosition() function, like this:

navigator.geolocation.getCurrentPosition(granted, denied)

This line of code calls the browser’s geolocation software, passing it the names of two new functions called granted() and denied(). Because the function names (and not the actual function contents) are being passed to the getCurrentPosition() function, no parentheses are placed after the names.

One or the other of these two functions will be called back by the browser according to whether the user grants or denies you the use of its location data. Therefore both of these routines must be written.

A granted() Function

Here’s what an example granted() function might look like:

[image: Images]

In this instance I have opted to simply display the returned location information in an alert() message window. You will be more likely to display a map or perform other functions based on this information. As for the user’s location, this is returned in the following two properties:

[image: Images]

The former property holds the latitude value and the latter the longitude.

A denied() Function

If the user has chosen not to allow the browser’s location data to be revealed to your code, then your denied() function will be called, and an error code will be given to state why.

Here’s an example denied() function:

[image: Images]

This code is a little longer because it processes the value in error.code, which can be a number between 1 and 4, as follows:

 1. Permission Denied

 2. Position Unavailable

 3. Operation Timed Out

 4. Unknown Error

Again, I have chosen a simple alert() message to provide this information. In your code (if you choose to give a message at all), you may wish to display a simpler and more friendly phrase such as “Geolocation request denied.”

In the Real World

Here’s a complete document you can use to display a Google map of a user’s current location in a <div> element, based on the coordinates returned by the browser’s geolocation code. If permission is not given or the browser doesn’t support geolocation, then a message stating that is provided by writing directly into the contents of the <div> tag with the id of status using its innerHTML property.

[image: Images]

[image: Images]

When a web page containing this code is loaded into a browser, the first thing that happens is a request is made to the user. Depending on the browser and operating system in use, this may be presented in a variety of different ways. On Google Chrome, for example, it looks like Figure 15-1.

[image: Images]

FIGURE 15-1 The geolocation request displayed by Google Chrome

If permission is not given, then only a short message will be displayed, but if it is given, then the result will be similar to Figure 15-2.

[image: Images]

FIGURE 15-2 Permission has been granted and a map is displayed.

When using the Google Maps service, you can modify the arguments to the gopts object (highlighted in bold in the following code) to modify the type of map displayed:

[image: Images]

The variables you can alter are:

 • Lat and long These can be as retrieved from the user’s device through geolocation, or coordinates you have determined and wish to supply (perhaps to provide a map of your employer’s place of work)

 • zoom This can be a value between 1 for fully zoomed out and 20 for fully zoomed in.

 • mapTypeId This can be google.maps.MapTypeId.SATELLITE for a satellite map, or replace the final SATELLITE property with ROADMAP for a road map, or with HYBRID for a combined road and satellite map.

[image: Images]

 You can also use Bing maps for mapping if you prefer, but it’s a little more involved. For information on how to do so, please refer to http://tinyurl.com/bingmapsapi.

The GPS Service

The GPS (Global Positioning System) service consists of multiple satellites orbiting the earth whose positions are very precisely known. When a GPS-enabled device tunes in to these satellites, the different times at which signals from these various satellites arrive enable the device to know where it is to within just a few feet.

This is achieved by the fact that the speed of light (and radio waves) is a known constant, and the time it takes a signal to get from a satellite to a GPS device precisely indicates the satellite’s distance. By making a note of all the different times at which signals arrive from different satellites, a simple calculation lets the device derive each of the satellite’s positions relative to each other, and therefore very closely triangulate the position of the device relative to them.

Many mobile devices such as phones and tablets have GPS chips and can provide this information. But some don’t, others have them turned off, and others may be used indoors where they are shielded from the GPS satellites, and therefore cannot receive any signals. In these cases, additional techniques may be used to attempt to determine your location.

Other Location Methods

First, if your device has mobile phone hardware, it may attempt to triangulate its location by checking the timings of signals received from the various communications towers with which it can communicate (and whose positions are very precisely known). If there are a few towers, this can get almost as close to your location as GPS. But where there’s a single tower, the signal strength is used to determine a radius around the tower, and the circle it creates represents the area in which you are likely to be located. This could place you anywhere within a mile or two of your actual location, down to within a few tens of feet.

Failing that, there may be known Wi-Fi access points within range of your device whose positions are known, and since all access points have a unique identifying address called a MAC (Media Access Control) address, a reasonably good approximation of location can be obtained, perhaps to within a street or two.

And if that fails, the IP (Internet Protocol) address used by your device can be queried and used as a rough indicator of your location. Often though, this provides only the location of a major switch belonging to your Internet provider, which could be dozens or even hundreds of miles away. But at the very least, your IP address can narrow down the country, and sometimes the region you are in.

[image: Images]

 Your IP address is commonly used by media companies that restrict playback of their content by territory. However, some people are able to set up proxy servers that use a forwarding IP address in the country that is blocking them to fetch and pass content through the blockade back to their browser. Therefore, you should be aware that if you locate someone by IP address, the country identification may not necessarily be reliable.

Using geolocation will enable you to improve the features you offer to your mobile device web visitors, but not so much for desktop users, whose locations will remain difficult to ascertain.

Nevertheless, used sensibly and perhaps even in conjunction with asking your users directly to correct any such misinformation in order for you to provide better service, geolocation is a great feature. And if you know your user has an iPhone, Android, or Windows phone, you can be almost certain that you’re receiving the right data.

Summary

And that’s all there is to geolocation, so this is a short and sweet lesson, but hopefully one you have found very useful. In the next lesson I’ll take you through the extensions that HTML5 has made to HTML forms.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. What is the most common form of geolocation positioning hardware?

 2. How can you determine whether a browser supports geolocation?

 3. Which method do you call to request location data from a browser, and what values should be passed to this function?

 4. If the user grants permission for you to access their location, how will that data be supplied?

 5. If the user doesn’t grant permission to access their location, what information is supplied instead?

 6. If you are using location data to display a Google Map, what is the URL of the API (Application Programming Interface) you should call in a <script> tag?

 7. How do you pass the latitude and longitude to display to the Google Maps API?

 8. What values can you supply to the Google Maps zoom property to choose the zoom level?

 9. What types of Google Maps can be displayed, and how?

 10. Why are IP addresses not a very accurate form of geolocation?

[image: Images]

Building Advanced Forms

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

If you’ve ever used HTML forms, you’ll be aware of how limiting they can be. Yes, they do provide the facility to create different types of fields and buttons, but that’s about it.

There are no date pickers for easy selection of dates from pop-up menus. There’s no built-in verification of data types such as numbers, strings, or e-mail addresses, and there’s no built-in ability to match patterns in regular expressions.

But with HTML5 all these problems and several more have been addressed, making completing forms easier than ever for users, and also much simpler for web developers to create.

New Form Attributes

HTML5 is still very much an evolving specification that browsers are implementing only piecemeal. Therefore some features are available in some browsers, and others in different ones.

And it’s not always the same browsers that haven’t yet caught up with the spec because, as of this writing, all of the latest versions of all the main browsers omit at least three of these attributes, and some omit as many as ten.

Nevertheless, as time passes, browsers will implement more and more of the HTML5 spec, and therefore this lesson provides the information you need for using these features.

The autocomplete Attribute

The autocomplete attribute can be applied to the <form> tag or any of the color, date, email, password, range, search, telephone, text, or url types of the <input> tag. Valid arguments for this attribute are on (the default) and off.

When autocomplete is on, any field with an id that has previously had an input entered will remember its value and offer it as a suggested value, saving you from having to enter it again.

When autocomplete is off, this behavior is disabled. When applied to a <form> tag, the attribute affects all relevant fields within a form. When applied to an <input> tag, only that field is affected. Here are two examples of using the attribute:

[image: Images]

The autofocus Attribute

The autofocus attribute can be applied to any <input> tag to give its field automatic focus when a page loads. This has the effect of placing the cursor in an input field ready to type, or selecting any other type of field ready to change it, and is activated like this:

<input type=’text’ name=’field’ autofocus=’autofocus’>

[image: Images]

 This feature is supported by the latest versions of all major browsers, but not mobile browsers, as it would be a distraction calling up the onscreen keyboard when often it wouldn’t be wanted.

To achieve the same effect in older browsers, you can add some JavaScript to the <body> tag of your web page, like this:

<body onload=’document.forms.myform.myfield.focus()’<

Then make sure your form looks something like this:

[image: Images]

To make this work, both the <form> and the <input> tags must each be given a unique id. In this case I chose the name myform for the form and myfield for the field. These are then easily referenced in the argument to the onload event of the <body> tag, which calls the focus() function on the field when the web page has loaded.

The form Attribute

With the form attribute, it is not necessary for you to place <input> tags within the form to which they apply. Instead, as long as you give a form an id, you can specify that value as the argument for a form attribute.

For example, the following code opens and then closes a form with the id of myform, and the <input> tag field is attached to it only after the form is closed:

[image: Images]

[image: Images]

 This feature is not supported by Internet Explorer at the time of writing.

Form Overrides

Several new attributes have been added to HTML in version 5 that allow you to override various form settings such as the action and enctype properties, but so far only a few browsers have implemented them.

Form overrides work with either of the submit or image types of the <input> tag, and are supported in the latest versions of all major browsers.

The formaction Attribute

The formaction attribute is a form override that lets you change the action attribute to a different destination. For example, in the following code, the form will not post to the program prog.php as specified in the <form> tag, and will instead post to prog2.php:

[image: Images]

This attribute can be particularly useful when you wish to provide more than one submit button, each with a different destination program to which the form should submit.

The formenctype Attribute

The formenctype attribute is a form override that lets you change the encoding type of a form (the enctype attribute), in a similar manner to the formaction override.

The formmethod Attribute

The formmethod attribute is a form override that lets you change the posting method (the post or get value of the method attribute), in a similar manner to the formaction override.

The formnovalidate Attribute

The formnovalidate attribute is a form override that lets you change the novalidate attribute, in a similar manner to the formaction override.

The formtarget Attribute

The formtarget attribute is a form override that lets you change the target attribute, in a similar manner to the formaction override.

The height and width Attributes

The height and width attributes can be applied to the image type of the <input> tag to change its height and width. You use the attributes like this, with a result such as that in Figure 16-1:

<;input type=’image’ src=’finger.png’ width=’117’ height=’100’>

[image: Images]

FIGURE 16-1 Resizing an image used in an input

The list Attribute and <datalist> and <option> Tags

Some input fields support lists and the list attribute can be used to reference them. For example, the following HTML uses this attribute, along with the new <datalist> tag, to offer a selection of URLs from which to choose:

[image: Images]

The value supplied to the list attribute should be the id name of a <datalist> tag. This feature works a bit like the autocomplete attribute, except that you define the list of suggested choices that appear when the input is given focus.

[image: Images]

 Currently this feature is not supported in Safari, but you can still use it in your web pages (as shown in Figure 16-2) because Safari will simply not display the list of suggestions, but for other browsers, your web forms that use it will be quicker to fill in.

[image: Images]

FIGURE 16-2 Prepopulating input using the list attribute and <datalist> tag

The min and max Attributes

The min and max attributes are used to specify minimum and maximum value for input types that contain numbers or dates. Here is an example (the result of which can be seen in Figure 16-3, in which the up and down selectors can be seen to the right of the input):

<input type=’time’ name=’deliver’ value=’09:00’ min=’09:00’ max=’17:00’>

[image: Images]

FIGURE 16-3 Using the min and max properties

In addition to using the mouse to change the input up or down (within the minimum and maximum values), a valid input between these values can be directly entered, or the up and down keyboard buttons can be used to scroll through the supported values.

[image: Images]

 I don’t recommend you rely on this type of validation yet, though, since neither Firefox nor Internet Explorer support its use (the attributes will be ignored).

The multiple Attribute

The multiple attribute allows you to accept multiple values for an <input> tag that uses any of the email, range, or file types. It works in the latest versions of all major browsers except for Internet Explorer and Opera. You will enable it like this:

<input type=’file’ name=’images’ multiple=’multiple’>

Then, when the browse box pops up, multiple files can be selected at a time (normally in conjunction with the ctrl key). On browsers that don’t yet support this feature, only single files can be selected.

[image: Images]

 Because browsers that don’t support this feature will only allow single items to be selected, until all browsers support it, this feature is not safe to use if you are requiring multiple inputs (rather than simply allowing them).

The novalidate and formnovalidate Attributes

These Boolean attributes specify that a form should not be validated when it is submitted. The novalidate attribute is applicable to the <form> tag and the formnovalidate attribute is applicable to only the submit and image types of the <input> tag. You use novalidate like this:

[image: Images]

And you use formnovalidate like this:

[image: Images]

[image: Images]

 At the time of writing Safari does not yet support this feature, but once it is implemented across all browsers, you may well choose to use it all the time, at least until the validation features in HTML5 are much better than those currently offered. If you are looking for reliable in-browser form validation, there are many libraries available, such as the open source tool at livevalidation.com.

The pattern Attribute

The pattern attribute lets you specify a regular expression with which an input field should be evaluated. It can be applied to any <input> tag that uses any of the email, password, search, telephone, text, or url types. For example, to allow only alphanumeric characters, the dash, and underline in a field, you might use the following HTML:

<input type=’text’ name=’username’ pattern=’[\w\-]{6,16}’>

The pattern ’[\w\-]{6,16}’ tells the browser to accept only the following:

 • \w The letters a-z and A-Z, the digits 0-9, and the underline character

 • \- The dash character

 • {6,16} Between 6 and 16 characters inclusive

[image: Images]

 Currently this feature is not supported by Safari, and therefore it cannot be relied upon for reliable in-browser validation. I would also add that Chrome simply refuses to submit a form when a pattern doesn’t match—giving you no idea why, while Opera says “[input] is not in the format this page requires!” Therefore I recommend ignoring this feature until such time as it is available on all browsers, and has matured to the point of actually informing users what they need to enter.

The placeholder Attribute

The placeholder attribute lets you place a helpful hint in any blank input field, with which you can help explain to users what they should enter. You use it like this:

[image: Images]

The size attribute value of 35 ensures that there’s enough room for the placeholder text which, as long as nothing has yet been entered into a field, is displayed in a light color, as shown in Figure 16-4.

[image: Images]

FIGURE 16-4 Displaying a placeholder

As soon as the field is given focus and a user starts typing, the prompt disappears. This attribute can be applied to any of the email, password, search, telephone, text, and url types of the <input> tag.

The required Attribute

The required attribute is used to ensure that a field has been completed before a form is submitted. You use it like this:

<input type=’number’ name=’age’ required=’required’>

The step Attribute

The step attribute is used to specify a step value for input types that contain numbers or dates. Here’s how you might use it in conjunction with the min and max attributes:

[image: Images]

The value can be any positive integer and, in the case of times, its value is in seconds. The result of using the preceding HTML is shown earlier in Figure 16-3. By clicking on the up and down icons, or by using the up and down cursor keys, it is possible to scroll through the hours to make a selection.

[image: Images]

 At the time of writing, this feature is not yet supported by Firefox or Internet Explorer.

New Form Input Types

Over the years, it has been discovered that there are many more types of input a website might ask for than the simple selection types supported by HTML 4.01. In fact, there are now 16 new types of input available in HTML5.

What they provide is tighter control over user input, along with built-in validation. The only drawback is that these input types are not widely implemented. Nevertheless, you can still use all of them, even on unsupported browsers, as they will fall back to being regular text fields. If you use these types over time, then as other browsers catch up, your forms will automatically become easier to complete.

[image: Images]

 Mobile devices should generally be aware of some of these input types in the sense that they will change the keyboard type presented to you accordingly. For example, the email input type will ensure that an @ symbol is included in the main set of characters, the number type ensures that number keys are visible, and the tel type displays a telephone keypad.

The color Input Type

The color input type calls up a color picker so you can simply click on the color of your choice. You use it like this:

Enter your preferred color <input type=’color’ name=’favcolor’>

[image: Images]

 This feature is only available in Chrome and Opera at the time of writing.

Date and Time Pickers

Date and time pickers are similar to the color input type in that eventually you’ll be able to click on one and a calendar will pop up, from which you can select a date or time, as shown in Figure 16-5.

[image: Images]

FIGURE 16-5 Date pickers in Google Chrome

[image: Images]

 Currently these pickers do not work in Firefox or Internet Explorer, so my advice is to ignore these features until they mature and work properly on all the main browsers; in the meantime, there are plenty of JavaScript date picker libraries you can find via search engines.

The date Input Type

The date input type selects a date and is used like this:

<input type=’date’ name=’thedate’>

The returned value will be of the form YYYY-MM-DD.

The month Input Type

The month input type selects a month and is used like this:

<input type=’month’ name=’themonth’>

The value returned is of the form YYYY-MM.

The time Input Type

The time input type returns a time in the 24-hour form HH:MM. You use it like this:

<input type=’time’ name=’thetime’>

The week Input Type

The week input type returns the week in the form YYYY-WNN (for example 2018-W06). You use it like this:

<input type=’week’ name=’theweek’>

The datetime Input Type

The datetime input type returns the date and time in UTC (Coordinated Universal Time), which will be almost the same as Greenwich Mean Time, give or take a second. The returned value will be of the form YYYY-MM-DDTHH:MMZ (for example 2018-10-15T15:35Z). You use it like this:

<input type=’datetime’ name=’dateandtime’>

[image: Images]

 This type is not supported in Chrome.

The datetime-local Input Type

The datetime-local input type returns the user’s local date and time. The returned value will be of the form YYYY-MM-DDTHH:MM (for example, 2018-10-15T15:35) and will contain no time zone information. You use it like this:

<input type=’datetime-local’ name=’localdateandtime’>

The email Input Type

The email validation type ensures that the browser knows an e-mail address is expected and if necessary can cater to it (for example, by including the @ character on the pop-up keyboard of a mobile phone):

<input type=’email’ name=’emailaddress’>

[image: Images]

 This type is not supported by Safari.

The number Input Type

The number validation type ensures that only numbers can be entered. You use it like this:

<input type=’number’ name=’age’>

Small up and down icons appear next to the input to allow changing a default value by clicking them, or by using the up and down cursor keys.

The range Input Type

The range input type causes a range widget to be displayed that you can slide to select any value between a minimum and maximum, and with a specified start and step value.

It is used like this, and the result is shown in Figure 16-6.

<input type=’range’ name=’num’ min=’0’ max=’255’ value=’128’ step=’1’>

[image: Images]

FIGURE 16-6 A range widget in Google Chrome

The search Input Type

When you specify the search type, browsers are supposed to tailor the input box to provide features that might include search suggestions (in a similar way to Google Search), an icon with which to empty the field, and possibly styling changes to alert you to the type of input.

The only enhancements are an X icon for clearing the input, and a rounded input field (on Mac Safari only). But there’s no harm in you using this input type right now, as other browsers simply display the default text field, and when they support the feature, your web pages will already be enhanced for it.

You use the attribute like this:

<input type=’search’ name=’searchphrase’>

[image: Images]

 As of writing, this has been implemented only on Safari and Chrome.

The tel Input Type

The tel input type informs the browser that a telephone number is to be expected. Currently it is used by iOS devices when the field is selected to bring up a telephone number keypad in place of a keyboard:

<input type=’tel’ name=’phone’>

The url Input Type

As with the tel input type, the url type is also there to tell the browser about the type of data to be expected. In the case of the iPhone and other iOS devices, this ensures that the ., / and .com buttons are displayed.

Other browsers may also offer enhancements for this type in the future, which is created with the following HTML:

<input type=’url’ name=’webpage’>

Summary

As you will have noticed, forms are probably the subsection of the HTML5 specification that have been the least worked on by the browser developers. This is a shame because submitting data is one of the most common and important tasks people do on the web. Still, HTML5 browser support is improving, and you can keep up with the latest developments at tinyurl.com/h5forms. In the next lesson we’ll take a look at local storage and cross document messaging.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. How can you provide access to typing into an input field without the user first having to click it?

 2. With which attribute can you allow previous values that have been entered for the current input field’s name to be selected by the user?

 3. What is the purpose of the list attribute?

 4. How can you set minimum and maximum limits for an input?

 5. Which attribute enables uploading of more than one file at a time via a form?

 6. How can you place text in an empty input field to prompt the user for the type of input expected?

 7. Which attribute can you use to ensure that an input must be completed before a form is submitted?

 8. What does the attribute pattern=’[\w]{5,10}’ do to the input to which it is applied?

 9. How can you offer a color picker in an input (to browsers that support it)?

 10. How can you call up a calendar date picker in an input (for browsers that support it)?

[image: Images]

Implementing Local Storage and Cross-Document Messaging

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

You are probably quite familiar with cookies: small units of data that are stored locally by your browser, which contain information helpful to using a website, such as your login details (to save you from continuously re-entering them), and which are often also used somewhat more intrusively to track your surfing habits.

Local storage is similar to cookies, but it supports storing much larger amounts of data and also supplies a local database engine to make saving and retrieving data much easier.

The benefits of this are more powerful web apps, with more data residing on your computer, rather than on servers somewhere else in the world. For example, a website that manages your TV viewing could store all your favorite programs in a local database, so that when you open the app, it only has to check a website of listings to see when these programs are on next, and on which channels. This takes a strain off the web server by leaving the data distributed among users.

Another benefit is that such local databases can be accessed from a local web page using JavaScript, meaning that the data can be used by the app even where there is no Internet connection (in this example case, as long as the TV listings have also been downloaded).

Using Local Storage

In the past the only way you could store data on a user’s computer was with cookies, which were limited in number and could hold only 4K each. They also have to be passed back on every page load or reload and, unless your server uses SSL (Secure Sockets Layer) encryption (like with HTTPS), each time a cookie is transmitted it travels in the clear.

But with HTML5 you have access to a much larger local storage space (typically between 5MB and 10MB per domain depending on the browser) that remains over page loads and between website visits (and even after powering a computer down and back up again), and which is not sent to the server on each page load.

You handle the data in pairs consisting of a key and its value. The key is the name assigned for referencing the data and the value can hold any type of data, but it is saved as a string.

All data is unique to the current domain. Any local storage created by websites with different domains is separate from the current local storage for security reasons, and is not accessible by any domain other than the one that stored the data.

[image: Images]

 For security reasons, local storage will work only when a web document is viewed after being sent via a web server. You cannot test documents that implement this feature from a local file system.

Storing and Retrieving Local Data

To access local storage, you use methods of the localStorage object such as setItem(), getItem(), removeItem(), and clear(). For example, to locally store a user’s username and password, you might use code such as this:

[image: Images]

If the size of the value is larger than the disk quota remaining for the storage area, an “Out of memory” exception is thrown. Otherwise, when another page loads or when the user returns to the website, these details can be retrieved to save the user entering them again, like this:

[image: Images]

If the key doesn’t exist, then the getItem() function returns a value of null.

You don’t have to use these function names if you don’t want to, because you can access the localStorage object directly as the two following statements are equivalent to each other:

[image: Images]

And the two following statements are therefore also equivalent to each other:

[image: Images]

Figure 17-1 shows an alert() message window displaying these values being retrieved from local storage, using the following code:

[image: Images]

[image: Images]

[image: Images]

FIGURE 17-1 Data has been saved to and retrieved from local storage.

The first part of code within the if() statement writes an error message to the web page if local storage is not supported in the browser. This is determined by examining the localStorage object and, if it is undefined, then local storage is unavailable.

In the else part of the code, a message is first written to the web page indicating that local storage is supported. Then the username and password are saved to local storage with the setItem() function. Next, these values are retrieved from local storage into the variables username and password. Finally, an alert() message window is popped up, which displays the retrieved values.

[image: Images]

 Until they are erased, these values will remain in the local storage once saved, and you can verify this by trying the preceding code for yourself, running it once, commenting out the two lines of code that call setItem(), and then running it again—the alert window will still report the same values.

Removing and Clearing Local Data

To remove an item of data from the local storage, all you need to do is issue a command such as this:

username = localStorage.removeItem(’username’)

This serves to retrieve the item of data and place it into a variable (in this case username), and then deletes the data from local storage. If you don’t need to first read the data you are removing, you can simply call the function on its own, like this:

localStorage.removeItem(’username’)

You can also completely clear the local storage for the current domain by issuing this command:

localStorage.clear()

[image: Images]

 Try any of these methods on the preceding example and run it again, and you’ll find that the values have been erased.

Saving and retrieving data is starting to take us into the realms of much more complicated JavaScript programming, somewhat beyond the scope of this book. So the information in this lesson is mostly of use to programmers working with large amounts of JavaScript program code.

If you are a beginner to JavaScript, then it’s best to simply be aware of the possibilities of local storage, and come back here to refresh your memory about how it works when your programming is sufficiently advanced and you find the need for it.

Cross-Document Messaging

Cross-document messaging (also known as web messaging) allows scripts in different documents to interact with each other through use of the postMessage() function. The code to send messages is just a single instruction, in which you pass the message to be sent and the domain to which it applies, as follows:

[image: Images]

[image: Images]

In this example an <iframe> element with the ID of frame is created, that loads in the web document listen.htm (see the following code listing). Then, within the <script> section, the variable count is initialized to 1 and a repeating interval is set up to occur every second to post the string ’Message ’ (using the postMessage() function) along with the current value of count, which is then incremented, and the message is posted only to listeners in the domain http://localhost.

The file listen.htm looks like this:

[image: Images]

This example creates a <div> element with the ID output, in which the contents of received messages will be placed. In the <script> section there’s a single anonymous function attached to the onmessage event of the window. In this function the event .data property (the contents of the message) is then displayed, as shown in Figure 17-2.

[image: Images]

FIGURE 17-2 The iframe is displaying messages from the parent frame.

For security reasons web messaging works only with domains, and so you cannot test it by loading files in from a file system—a web server must be used. The origin used in this example is http://localhost, because these examples are running on a local development server.

As it stands, the listen.htm document displays any and all messages it receives, which is also not very secure because malicious documents also present in the browser can attempt to send messages that unwary listener code might access. Therefore you can restrict the messages your listener reacts to using an if() statement to test the origin property, like this:

[image: Images]

Summary

That concludes this part of the course on some of the more advanced aspects of HTML5 that you can use right now. In the next two lessons I’ll show you how to add HTML5 audio and video to your web pages, without having to resort to using plug-ins such as Microsoft Silverlight or Adobe Flash.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. Why is local storage a better solution than cookies?

 2. How can you determine whether local storage is available in a browser?

 3. How do you store an item of local storage data?

 4. How do you retrieve an item of local storage data?

 5. How can you remove an item from local storage?

 6. How do you clear all the data relating to your domain in local storage?

 7. How can you post a message to another document loaded into the browser?

 8. How can you listen for messages from other loaded documents?

 9. What should you do to ensure that you post messages only to the documents you want to receive them?

 10. What should you do to ignore any message received from documents from which you do not wish to receive them?

[image: Images]

Playing Audio

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

In this section of the course, I introduce two of the most popular additions to HTML5, the <audio> and <video> tags. In fact, they are probably going to be even more used than the <canvas> tag due to the ability to play media directly within the browser, without the need for an external plug-in such as the Flash Player.

So in this lesson I’ll show you how easy it is to add HTML5 audio to your pages, which I think you’ll find is a remarkably easy thing to do, as long as the browser is a recent one.

As you work through this lesson, please remember that the technology is still young and the file formats supported are constantly evolving (and vary by browser for patent reasons), but the following explains all you need to know to embed audio using HTML5.

[image: Images]

 Flash is a programming environment best suited for creating animations and games, which has mostly been adopted for playing video. But it is likely that HTML will supersede it, partly due to Apple not including it by default on new Macs and banning it from iOS devices, and also because the <canvas> tag provides almost everything a programmer previously would have needed Flash for.

Understanding Codecs

The term codec stands for enCOder/DECoder and describes the functionality provided by software that encodes and decodes media such as audio and video. In HTML5 there are currently a number of different sets of codecs available, depending on the browser used.

Here are the codecs currently in use by the HTML5 <audio> tag (and also when audio is attached to HTML5 video):

 • AAC This audio codec, which stands for Advanced Audio Coding, is the one used by Apple’s iTunes store. It was originally proprietary, patented technology, but has since been standardized as part of the MPEG-2 and MPEG-4 specifications, and is supported by Apple, Google, and Microsoft.

 • MP3 This audio codec, which stands for MPEG Audio Layer 3, has been available for many years and the term is often (incorrectly) used to refer to any type of digital audio. It’s an open proprietary format (but subject to patents in some countries) that is supported by Apple, Google, and Microsoft.

 • PCM This audio codec, which stands for Pulse Coded Modulation, stores the full data as encoded by an analog to digital converter, and is the format used for storing data on audio CDs. Due to not using compression, it is called a lossless codec, and its files are generally many times larger than AAC or MP3 files. It is supported by Apple, Mozilla, and Opera.

 • Vorbis Sometimes referred to as Ogg Vorbis, because it generally uses the .ogg file extension, this audio codec is unencumbered by patents and free of royalty payments. It is supported by Google Chrome, Mozilla Firefox, and Opera.

The following list details the major operating systems and browsers, along with the audio types they support by default:

 • Apple iOS AAC, MP3, PCM

 • Apple Safari AAC, MP3, PCM

 • Google Android 2.3+ AAC, MP3, Vorbis

 • Google Chrome AAC, MP3, Vorbis

 • Internet Explorer AAC, MP3

 • Mozilla Firefox MP3, PCM, Vorbis

 • Opera PCM, Vorbis

If you study this list, you’ll see that none of these codecs are shared by all browsers and platforms, which is rather inconvenient. The problem occurs particularly because some browsers choose to not employ the licensable codecs.

[image: Images]

 Apple Safari for Windows requires the Apple QuickTime media player to be installed in order for HTML5 audio and video to play, so you may wish to use JavaScript browser detection software to alert your Windows Safari users of this, particularly since the only error they may otherwise get is any message you include inside the <audio> tags.

The <audio> and <source> Tags

However, there’s a simple (if inconvenient) solution, which is to record your content using multiple codecs and then list them all within <audio> and </audio> tags, as in the following example. The result of running this code in all the main browsers can be seen in Figure 18-1:

[image: Images]

[image: Images]

FIGURE 18-1 How the five main browsers display HTML5 audio

In the preceding example, three types of audio are made available, but nowadays you generally only need to encode in two formats: OGG, and either AAC or MP3 to ensure you cover all the bases.

[image: Images]

 Perform an Internet search to find suitable programs to create the file types you need—there are plenty of them, both paid and free.

The <audio> and <source> Tag Attributes

In the preceding example you may have noticed that I applied an attribute with the name controls to the <audio> tag. This had the effect of causing a set of controls to appear, as displayed in Figure 18-1. If that attribute is omitted, then the controls will not display (and you’d either have to use another attribute called autostart or some JavaScript to make the audio play).

Here’s a list of audio attributes supported by HTML5:

 • autoplay Causes the audio to commence playing as soon as it is ready.

 • controls Causes the Control Panel to be displayed.

 • loop Sets the audio to play over and over.

 • preload Hints at how much buffering (or preloading) to use to provide the best user experience.

 • src Specifies the source location of an audio file.

 • type Specifies the codec used in creating the audio.

By selecting the attributes you require and encoding audio in the right formats, you can ensure that it will play on all HTML5-compatible browsers, and you’ll never have to worry about loading in a Flash or other audio player again, unless you intend to also support older browsers, as described in the following section.

Supporting Older Browsers

Older browsers that do not recognize the <audio> tag can still play audio as long as they allow the embedding of an object that can play audio, such as a Flash program file. Assuming you have access to a Flash player called audio.swf (there is one in the examples.zip file for this course), you can use code such as the following to do this:

[image: Images]

On a non-HTML5 audio-enabled browser, the code within the <object> and </object> tags will load in the Flash program file audio.swf, and pass it the MP3 file audio.mp3, which can then be played by selecting the Play button. Figure 18-2 shows what the player looks like—not bad compared to the HTML5 ones, so it’s a pretty good fallback.

[image: Images]

FIGURE 18-2 The fallback Flash audio player

Summary

You now have all the tools you need in order to play audio in your web pages, whether or not the browser supports HTML5 (but as long as it at least supports Flash). In the next lesson I’ll show you how to do the same with video.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. Which HTML5 tag embeds audio in a document?

 2. Name the four types of audio format supported by HTML5 browsers.

 3. Which two audio formats used together will ensure that your audio will play on all major browsers and platforms?

 4. What is the purpose of the <source> tag?

 5. Which two attributes does the <source> tag require?

 6. Which attribute makes audio play on page load?

 7. How can you control whether or not the audio controls are displayed?

 8. How can you set a piece of audio to play over and over?

 9. How can you cause audio to begin loading even before the user selects Play?

 10. How can you support older browsers that do not recognize HTML5 audio?

[image: Images]

Displaying Video

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

Adding HTML5 video to your pages is almost as easy as adding audio, but there are some differences, and I’ll point out the things you need to concern yourself with.

The main thing to realize, though, is that HTML5 video is still in its infancy and that specifications and codecs may change over time, as may the best ways to code and display your video. Still, following the advice in this lesson, you’ll be able to add video to any HTML5-enabled browser that supports the <video> tag, and also some other or earlier browsers that do not (as long as they support the Flash plug-in).

The Video Codecs

As explained in the previous lesson, the term codec stands for enCOder/DECoder and describes the functionality provided by software that encodes and decodes media such as audio and video.

For video, though, codecs are placed within containers, which may be any of the following:

 • MP4 A license-encumbered multimedia container format standard specified as a part of MPEG-4, supported by Apple, Microsoft and, to a lesser extent Google, since it has its own WebM container format.

 • OGG A free, open container format maintained by the Xiph.Org Foundation. The creators of the OGG format state that it is unrestricted by software patents and is designed to provide for efficient streaming and manipulation of high-quality digital multimedia.

 • WebM An audio-video format designed to provide a royalty-free, open video compression format for use with HTML5 video. The project’s development is sponsored by Google.

In the HTML5 <video> tag there are currently a number of different sets of codecs available, depending on the browser used:

 • H.264 A patented proprietary video codec for which playback is free for the end user, but which may incur royalty fees for all parts of the encoding and transmission process.

 • Theora This is a video codec unencumbered by patents, and which is free of royalty payments at all levels of encoding, transmission, and playback. This codec is supported by Google Chrome, Mozilla Firefox, and Opera.

 • VP8 This video codec is similar to Theora but is owned by Google, which has published it as open source, making it royalty-free. It is supported by Google Chrome, Mozilla Firefox, and Opera. There is also a newer VP9 codec.

The following list details the major operating systems and browsers, along with the video containers and video types they support by default:

 • Apple iOS MP4 / H.264

 • Apple Safari MP4 / H.264

 • Google Android 2.3+ MP4, OGG, WebM / H.264, Theora, VP8

 • Google Chrome MP4, OGG, WebM / H.264, Theora, VP8/VP9

 • Internet Explorer MP4 / H.264

 • Mozilla Firefox MP4, OGG, WebM / H.276, Theora, VP8/VP9

 • Opera OGG, WebM / Theora, VP8

As with HTML5 <audio>, there is no single container and/or codec for the <video> tag common to all browsers and platforms. However, the dominant format is MP4 / H.264, so if you encode in that and then OGG / VP8 too, you’ll cover all the major browsers.

The <video> and <source> Tags

In the following example three different video formats are offered to the browser, as shown in Figure 19-1:

[image: Images]

[image: Images]

FIGURE 19-1 Playing an HTML5 video

[image: Images]

 If you don’t have access to any, you can search the Internet for a range of free and paid video conversion and compression tools.

The <video> and <source> Tag Attributes

In the preceding example I applied the attribute with the name controls to the <video> tag. This had the effect of causing a set of controls to appear, as displayed in Figure 19-1. If that attribute is omitted, then the controls will not display (and you’d either have to use the autostart attribute, or use some JavaScript to make the video play).

Here’s a list of video attributes supported by HTML5:

 • autoplay Causes the video to commence playing as soon as it is ready.

 • controls Causes the Control Panel to be displayed.

 • height Specifies the height at which to display the video.

 • loop Sets the video to play over and over.

 • poster Lets you choose an image to display prior to playback.

 • preload Hints at how much buffering (or preloading) to use to provide the best user experience.

 • src Specifies the source location of a video file.

 • type Specifies the codec used in creating the video.

 • width Specifies the width at which to display the video.

By selecting the attributes you require and encoding video in the right formats, you can ensure that it will play on all HTML5-compatible browsers, and you’ll never have to worry about loading in a Flash or other video player again, unless you intend to also support older browsers, as follows:

[image: Images]

Using the code in the <object> and </object> tags, you can ensure that non-HTML5-enabled browsers can still play your MP4 videos as long as they have the Flash plug-in loaded. The flowplayer.swf files required to do this are included in the examples.zip file on the accompanying website, but you can check for newer versions at the flowplayer.org website. If you download a newer version, ensure you match the code to the filenames, which will have numeric extensions such as -3.2.7, and so on.

The preceding code displays like Figure 19-2 in browsers that do not support the <video> tag, but do have Flash installed.

[image: Images]

FIGURE 19-2 Displaying the same video using a Flash player

[image: Images]

 The flowplayer.swf file restricts the playing of files directly from a local folder on a computer, therefore you must supply it with the full Internet URL of a file, as in the example.

Summary

Now that you’ve completed this lesson, you will have all the audio and video tools you need in order to play media in your web pages, whether or not the browser supports HTML5 (but as long as it at least supports Flash). You have now learned almost everything that is currently usable in HTML5. In the next lesson I’ll explain the features that are included in HTML5 but which have so far been poorly implemented (if at all), but which you should know about because they will probably be adopted by the major browsers over the coming months and years.

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. Which HTML5 tag embeds video in a document?

 2. Name the three types of video format supported by HTML5 browsers.

 3. Which two video formats used together will ensure that your video will play on all major browsers and platforms?

 4. What is the purpose of the <source> tag?

 5. Which two attributes does the <source> tag require?

 6. Which attribute makes video play on page load?

 7. How can you control whether or not the video controls are displayed?

 8. How can you set a video’s width and height?

 9. How can you display an image of your choice as a placeholder for where the video will play?

 10. How can you support older browsers that do not recognize HTML5 video?

[image: Images]

Working with Microdata, Web Workers, and Web Applications

[image: Images]

 To view the accompanying video for this lesson, please visit mhprofessional.com/nixonhtml5/.

HTML5 is an extension of HTML that is proceeding gradually. Many of its tags and features have already been implemented by the major browsers, while, as you’ve seen, others are only partially developed on some browsers.

So I have reserved the final lesson in this course for discussion of the remaining advanced HTML5 features, some of which have yet to be fully (or even properly) implemented, but are going to turn out extremely powerful when they become available, and some of which it may benefit you to start using already.

I show you how they work (or are planned to work), although aspects of some parts of the implementation could develop or be improved over time, as HTML5 is really more of a bundling of a group of unrelated features that developers want to add to HTML.

Microdata

The first of these features is called microdata, which is a subset of HTML designed for making a document have meaning to machines by providing metadata, just as it has meaning to a reader of the document.

What it does is make available the following new tag attributes: itemscope, itemtype, itemid, itemref, and itemprop. Using them you will be able to clearly define the properties of an item such as a book, providing a range of information that a computer can use to understand, for example, its authors, publishers, contents, and so on.

Here’s how HTML code looks that incorporates microdata, and Figure 20-1 shows how this HTML displays:

[image: Images]

[image: Images]

FIGURE 20-1 Packed with microdata, the HTML displays quite normally.

As you might expect, the adding of microdata has done nothing to alter the format of the HTML in any way. But it has provided a wealth of information to any browsers or search engines that can read the microdata and understand what it represents.

If you study the example code, you’ll see a couple of references to URLs at the data-vocabulary.org web server. That’s because this is where all the information you need for using microdata can be found, and from which you can choose the microdata types to use in your HTML. I strongly recommend you check it out, especially since that website is now saying that schema.org is likely to supersede it.

The in-browser DOM (Document Object Model) functions for managing microdata appear not to have been implemented yet by many major browser publishers.

When the API is incorporated into the major browsers, the microdata scripts will be able to use the microdata to expose information to the user, for example offering it in a form that can be used by other applications. Very likely there will also be mouseover and other information revealed when mousing over text that has microdata attached. So from that point of view there’s not a lot of reason to use microdata; not yet, anyway.

Because the API will use the function getItems(), you can test whether a browser supports it or not using the following code, which pops up a message telling you:

[image: Images]

The specs for microdata are available at tinyurl.com/microdataspecs, so take a look if you want to know what to expect, and how to use the getItems() function when browsers start to support it.

[image: Images]

 The first big users of microdata will actually be the search engines, and it has been reported that some microdata information is already turning up in Google’s index. Therefore you do have a very good reason to start using microdata immediately, because anything you can do to legitimately improve your website rankings in the search engines is important to implement.

Web Workers

Normally, to achieve background processing in JavaScript, you need to set up a timer that is called repeatedly, supplying slices of processor time to one or more functions, and these functions must then quickly do a small piece of work and return, in order to not slow down the browser and make it seem sluggish.

Web workers, however, provide a standard way for browsers to run multiple JavaScript threads in the background that can pass messages to each other, in much the same manner as the threads running in an operating system. You simply call up a new worker script, which will sit there in the background waiting for messages to be sent to it, which it will then act upon.

The aim of this is to achieve a speed increase of two to three times over regular background JavaScripts, although getting to grips with programming them is likely to require a longer rather than shorter learning curve.

Here’s how to find out if a browser supports web workers:

[image: Images]

This script simply alerts you as to whether or not web workers are supported by the browser you are using. Once you have determined that the browser will use them, then you can run code such as the following, which calculates prime numbers in the background:

[image: Images]

This script displays some text and creates an element with the id of result into which the highest prime number found so far is continuously written. This is achieved by creating the new object called worker by calling the Worker() function, passing it the name of an external JavaScript file called worker.js (explained shortly).

The onmessage event of the worker object is then attached to by an anonymous function. This triggers only when there is a new message to display, and the code that is called copies the data in event.data into the innerHTML property of the result element. After the code exits, it will not be called again until another message is ready to display.

The code that does the prime number calculation is saved separately in the worker.js, and looks like this:

[image: Images]

[image: Images]

This is a simple iterative piece of code that increases the value of n, starting from 1. After each increase, all values of 2 up to the square root of n are tested to see if they are a factor of n. If any of them is, then n cannot be prime and so the continue keyword forces execution to go back to the start of the search: loop to see if n+1 is prime, and so on.

But if n is found to have no factors, then it is prime and the continue keyword is not encountered, so program flow drops through to the postMessage() call, which posts the value n, creating an onmessage event on the worker object in the preceding code. The result of running this code is a line of text at the top of the browser that continuously updates and looks like this:

The highest prime number discovered so far is: 42737

Working together, an HTML page and associated JavaScript file can work away in the background performing all manner of tasks, something which was achievable in the past only by manually creating events to run the code a few instructions at a time before returning to allow the web page to have some processor cycles, after which the event is then created to let the program code run a few more cycles, and so on.

As you might imagine, the old way is rather tricky and can be cumbersome. It can also mess with smooth animations on your web page if you don’t get the event timings and time sharing exactly right. But with web workers, you can forget all about these things and simply place your background code into its own file, and just ensure that the code calls the postMessage() function whenever it has something to say.

For full details on the web worker specifications, you can check out the official website at tinyurl.com/webworkerspecs.

Offline Web Applications

The idea of offline web applications is that once you visit a website, the website tells your browser about all the files it uses so that the browser can download them all and you can then run the web application locally, even without an Internet connection.

Offline web applications require a web server to set up with the correct MIME types (originally known as Multipurpose Internet Mail Extensions, but the word Mail has since been replaced with Media), in order for a browser that understands offline web applications to make use of the feature and fetch the files it needs.

If you are using a web server that is not Apache, consult your manuals for how to add the text/cache-manifest MIME type in order for your server to send the manifest file using the correct type. Otherwise, there’s a neat shortcut you can use, which is to create a file called .htaccess in the same folder as the files to be made available offline, with the following contents:

AddType text/cache-manifest .appcache

[image: Images]

 On Windows (at least in Windows Explorer), you cannot create a filename that starts with a period, so, if needed, call the file something like a.htaccess and then rename it to .htaccess after uploading it. On some FTP programs the file will then seem to disappear because it becomes a system file.

Here’s how offline apps work. You start with a manifest file that contains all the files you’d like to offer for offline use, like the following, which is saved with the filename clock.appcache:

[image: Images]

The three files detailed in the manifest are then as follows, starting with clock.htm:

[image: Images]

Here’s clock.css:

[image: Images]

Thanks to the manifest, all these files will be downloaded and made available for use offline to use in any environment. Between them, they create a simple clock that looks like Figure 20-2.

[image: Images]

FIGURE 20-2 The clock web app running in Google Chrome

The code that does the work is in the clock.js file. It sets up a regular interval with setInterval() such that the code within it is called every 1,000 milliseconds (or once a second). This code simply copies the date into the innerHTML property of the output element.

For full details on the specifications for offline web applications, you can check out the official website at tinyurl.com/offlinewebapps.

Drag and Drop

You can support dragging and dropping of objects on a web page by setting up event handlers for the ondragstart, ondragover, and ondrop events, as follows:

[image: Images]

[image: Images]

In the <body> of this example, a <div> element is created, and its ondrop and ondragover events have the event handler functions drop and allow attached to them. After this there’s some text, and then an image is displayed, which has its draggable property set to true, and the function drag is attached to its ondragstart event.

In the <script> section, the allow event handler function simply prevents the default action of dragging (which is to disallow it) from occurring, while the drag event handler function calls the setData method of the dataTransfer object of the event, passing it the MIME type image/png and the target.id of the event (which is the object being dragged). The dataTransfer object holds the data that is being dragged during a drag-and-drop operation.

Finally, the drop event handler function also intercepts its default action so that dropping is allowed, then it fetches the contents of the object being dragged from the dataTransfer object, passing it the mime type of the object. Then the dropped data is appended to the target using its appendChild method.

When you load this example into a browser, you can drag and drop the image into the <div> element, as shown in Figure 20-3.

[image: Images]

FIGURE 20-3 An image has been dragged and dropped.

Other HTML5 Tags

There are a number of other new HTML5 tags that have not yet been implemented in any browser (or have poor or limited support), and which I therefore won’t detail (particularly since their specs could change).

But, for the sake of completeness, these tags are: <article>, <aside>, <details>, <figcaption>, <figure>, <footer>, <header>, <hgroup>, <keygen>, <mark>, <menuitem>, <meter>, <nav>, <output>, <progress>, <rp>, <rt>, <ruby>, <section>, <summary>, <time>, and <wbr>. You can get more information on these and all other HTML5 tags at the following URL: http://whatwg.org/html.

Summary

Congratulations! You’ve just completed this course on HTML5. Thanks for taking it! I hope you’ve enjoyed the process and have learned plenty of useful things from this course but, before you go, you may be interested in visiting my website at robinnixon.com to see my other books and courses, which cover both web technology and motivational and personal improvement topics.

If you feel so motivated, I would be very grateful for any review of this book you choose to leave at your preferred online website. And thanks once again for taking the course!

Self-Test Questions

Test how much you have learned in this lesson with these questions. If you don’t know an answer, go back and reread the relevant section until your knowledge is complete. You can find the answers in the appendix.

 1. What is the purpose of microdata?

 2. What are two of the attributes used to denote microdata?

 3. What do web workers do?

 4. How do you create a new web worker?

 5. How can you receive messages from a web worker?

 6. What are offline web applications?

 7. What MIME time is required by offline web applications for the manifest file?

 8. To which events should you attach in order to implement drag and drop in a document?

 9. What is the purpose of calling the preventDefault() function?

 10. Which two functions handle the passing of dragged-and-dropped items?

[image: Images]

Answers to the Self-Test Questions

This appendix contains the answers to all the questions posed at the end of the lessons in this book. To ensure you have understood everything, try to refrain from checking these answers until you have attempted to answer all the questions in a lesson.

If you don’t know an answer, try to find it in the book before you look here if you can, as this will help you to remember it next time.

Lesson 1 Answers

 1. The acronym HTML stands for HyperText Markup Language.

 2. A web browser is used by someone surfing the Internet to view content that is sent by web servers.

 3. The acronym HTTP stands for HyperText Transfer Protocol. This is the method used for transferring unencrypted web documents from a server to a browser (HTTPS is used for transferring encrypted documents).

 4. A web proxy fetches data from a web server on behalf of a web browser. Generally, proxies store local copies of web data in a cache, and then serve up the copies to a web browser to provide faster response.

 5. HTML documents often have the file extension .html or simply .htm.

 6. A 404 page is so called because 404 is the HTTP error code returned by a web server when a document cannot be located, so “not-found” pages are often referred to as 404 pages.

 7. An IP address is a set of numbers allocated to each unique Internet-connected device. A domain is an alphanumeric string used to refer to an IP address in a more memorable fashion. For example, at the time of writing, instead of remembering and entering http://74.125.224.72, you can simply type http://google.com into a browser.

 8. A query string is a set of alphanumeric data after a URL that starts with a ? character. This data may contain form input that is being sent to a web server via a Get request.

 9. An HTML tag is the name of an element enclosed within angle brackets, such as <i>, which represents italic text. Many tags also have matching closing tags such as </i>, which turns italics off again. Some tags such as do not have a matching closing tag because they are self-closing (empty).

 10. A tag attribute is additional data supplied to a tag, such as the URL of the image in . Here src is the attribute name and myimage.jpg is its value.

Lesson 2 Answers

 1. The declaration <!DOCTYPE html> should be at the start of all HTML5 documents.

 2. The <html> and </html> tags are used to contain HTML. The <html> element represents the root of an HTML document.

 3. The <head> tag is used (along with </head>) to denote a document’s head section, which includes items such as its title.

 4. To title a document, place the title between <title> and </title> tags.

 5. The <title> tag should appear within <head> and </head> tags.

 6. To denote the body of an HTML document, place it within <body> and </body> tags.

 7. CSS rules should be placed within <style> and </style> tags in the <head> section.

 8. You include a style sheet in an HTML document using the <link> tag, with appropriate attributes.

 9. To embed JavaScript into an HTML document, place it between <script> and </script> tags.

 10. You can run an external JavaScript file from an HTML document by calling it up from a <script> tag with its location provided as the value for its src attribute. You will also need a </script> tag following.

Lesson 3 Answers

 1. To place a comment in an HTML document, preface it with the characters <!-- and follow it with -->. Whatever is between these strings will not display.

 2. A <div> element occupies a rectangular area in a web browser which, by default, extends to the browser’s right-hand edge, and is often used as a container for groups of objects (such as creating a newspaper-style column). A element flows with text and is intended mainly for adjusting the styling of text.

 3. The six pairs of tags you can use to create different levels of headings are <h1> and </h1> for the largest size of heading, through <h6> and </h6> for the smallest.

 4. To denote the start and end of a paragraph, you use the <p> and </p> tags.

 5. To issue a line break in an HTML document, use the
 tag.

 6. To format HTML text in bold without using CSS, place it within and tags.

 7. To display italic text in HTML, place it within <i> and </i> tags.

 8. To display text in italics with CSS, you can place a rule inline, like this: Italic text, or you can create a class in the <style> section of a document, such as .italic { font-style:italic; }. You can then apply this class as follows: Italic text.

 9. To make an element display as line-through using CSS, you can use an inline rule such as: Line-through, or you can create a class in the <style> section of a document, such as .line { text-decoration:line-through; }. You can then apply this class as follows: Line-through.

 10. The term deprecated is applied to parts of HTML that should no longer be used and may become obsolete and removed from HTML at a later date—the developers of HTML are giving you warning that you should stop using such deprecated tags now while they still work, and that you shouldn’t wait until they stop working, because your documents may then break if you don’t update them in time.

Lesson 4 Answers

 1. The tag supports manipulating fonts with HTML.

 2. The color attribute of the tag is used to change color. For example: Green text.

 3. To change the face of a font, use the face attribute. For example: Arial text.

 4. To change a font’s size in HTML, use the size attribute. For example: Size 6.

 5. To change the background of a document’s body without using CSS, you can apply a value to its bgcolor attribute, in the following manner: <body bgcolor=’black’>.

 6. The hexadecimal number #FF0000 is red, #FFFFFF is white, and #888888 is mid-grey.

 7. To change font face using CSS, you can apply a style, either with a class or an ID, or inline like this: Arial font.

 8. To display images in HTML, use the tag, like this: .

 9. In HTML you can left-align an element such as an image by applying a value to its align attribute such as left, right, or center, like this: .

 10. The CSS way of left-aligning an element is to use the float rule, like this: , or by applying a class, or an ID using this rule, and so on.

Lesson 5 Answers

 1. You begin an ordered list with the tag, and close it with .

 2. You denote a list element by placing it within and tags.

 3. Unordered lists are specified in HTML with the and tags.

 4. To change the start value of an ordered list, you apply a value to its start attribute. For example: <ol start=’20’>.

 5. To change the bullet type of an unordered list, apply the value disc, circle, or square to its type attribute, like this: <ul type=’square’>. To change the case of an alphabetic ordered list, apply either A or a to its type attribute, or apply either I or i to change a roman numeral list, like this <ol type=’A’>, or this <ol type=’i’>.

 6. Definition lists use the <dl> and </dl> tags, in conjunction with <dt> and </dt>, and <dd> and </dd>.

 7. HTML tables are created with the <table> and </table> tags.

 8. Table rows are created with <tr> and </tr> tags, table data cells with <td> and </td> tags, and table heading cells with <th> and </th> tags.

 9. To add a caption to an HTML table, place the caption text between <caption> and </caption> tags, right after the <table> tag.

 10. The two attributes that allow cells to spread out over more than one row or column are rowspan and colspan. For example: <td rowspan=’2’>.

Lesson 6 Answers

 1. To preface secure Internet URLs, you use the https://prefixinalink (as long as the target web server supports secure web pages).

 2. You can access a subfolder called folder from the root of mydomain.com using the URL http://mydomain.com/folder/.

 3. To link to the website mydomain.com in HTML, you would use the following syntax: Click here.

 4. To link to the root of the current domain, simply use the relative URL / in a link, like this: Home.

 5. To make a destination URL from a hyperlink load into a different frame or window, apply a value to the target attribute of the link, as follows: Click me. To always open a link in a new window (or tab if the user has this setting), assign the value _blank to target.

 6. To hyperlink directly to a section within a web document, first create an anchor to that place like this: , and then you can link to the HTML immediately following this anchor as follows: Click me. If you are not linking to the current page, also include the other page’s URL, like this: Clickme.

 7. To create an HTML form, use the <form> and </form> tags.

 8. To request a single text input line from a user, you can use an <input> tag from within a form, like this: <input type=’text’ name=’firstname’>.

 9. To provide more than a single line of space to input text, you can use a <textarea> tag, like this: <textarea name=’bio’ cols=’40’ rows=’5’></textarea>. This creates an input box with five lines of 40 characters per line.

 10. To embed another document, you can use an iframe, like this: <iframe src=’http://othersite.com/news.html’></iframe>.

Lesson 7 Answers

 1. In conjunction with an tag, the <map> tag is used to create an image map, consisting of one or more areas within the map defined by <area> tags.

 2. To denote text as a citation, place it within <cite> and </cite> tags.

 3. To change the direction of text flow from left-to-right to right-to-left, use the following HTML: <bdo dir=’rtl’>, and use </bdo> when done.

 4. The Mark of the Web is a use that Microsoft’s Internet Explorer browser makes of HTML comments to set the security level of a document.

 5. To display text as if it has been deleted, use HTML such as the following: deleted text.

 6. To display text as if it has been inserted, use HTML such as the following: <ins>inserted text</ins>.

 7. To display text in a superscript font, place it within ^{and} tags, like this: July 23rd.

 8. A good way to display short quotations is between the <q> and </q> tags.

 9. Long quotations can be displayed by placing them within <blockquote> and </blockquote> tags.

 10. To display preformatted text in which the spaces and line feeds in the HTML are kept, enclose the relevant section within <pre> and </pre> tags.

Lesson 8 Answers

 1. To create an HTML5 canvas, you use the <canvas> and </canvas> tags.

 2. In non-HTML5-compatible browsers, <canvas> tags are ignored, and any text or HTML placed inside the tags is displayed.

 3. Once an HTML element has been given an ID, it can be referenced from JavaScript by passing that ID to the getElementById() function.

 4. GPS stands for Global Positioning System.

 5. Local Storage is a new HTML5 technology that is superior to cookies in that it provides far greater storage space and much easier access.

 6. The tags <audio> and <video> have been added to HTML5 to handle multimedia.

 7. To allow fallback to Flash for playing media, you can pull in a player using the <embed> and </embed> tags.

 8. Microdata is the new HTML5 technology that helps to provide additional information about the contents of a document by describing its parts very precisely.

 9. With HTML5, programmers can now offload background JavaScript tasks to web workers, which are then maintained automatically by the browser.

 10. MIME used to stand for Multipurpose Internet Mail Extensions, but that has since changed to Multipurpose Internet Media Extensions (more simply referred to as Internet Media Types these days).

Lesson 9 Answers

 1. The DOM is the Document Object Model used by HTML and consists of all the elements and sub-elements as objects and properties that can be accessed from JavaScript.

 2. To change a web document’s title, you can assign a new value to the document.title property, like this: document.title = ’New title’.

 3. You can create a JavaScript object from an HTML element by giving the element a unique ID, which you can then pass to the getElementById() function, which will return an object based on that element.

 4. A canvas must be given an ID in order for JavaScript to access it, like this: <canvas id=’mycanvas’></canvas>. This ID will generally be turned into an object by the getElementById() function.

 5. You can access an object’s style properties from JavaScript by appending .style. to the object, followed by the property’s name to be read or set, like this: object.style.width = ’100px’.

 6. The purpose of the O() function is to be a typing shortcut because it is much shorter than document.getElementById(), and it supports the passing of either an ID or an object.

 7. The purpose of the S() function is to provide quick and easy access to an object’s style properties, either by an element’s ID or by object.

 8. In order for drawing functions to operate correctly on a canvas, it is first necessary to create a 2D context object from the canvas, like this: context = canvas.getContext(’2d’). This context object has properties and methods that are used to write to and read from the canvas.

 9. To copy canvas data into an image, you can use the toDataURL() function, which extracts all the image data from a canvas and reformats it in such a way that it can be directly provided as the value for the src attribute of an image.

 10. To create a single-line comment in JavaScript, place the character pair // before the code to be commented out.

Lesson 10 Answers

 1. You create a filled rectangle using the fillRect() function. For example, the following draws a square that is 100 pixels wide and 100 pixels high at the top left of the canvas: context.fillRect(0, 0, 100, 100).

 2. To change the fill color, assign a value to the fillStyle property. For example: context.fillStyle = ’green’.

 3. To draw a clear rectangle, you can use the clearRect() function, like this: context.clearRect(0, 0, 100, 100).

 4. To draw a rectangular outline, use the strokeRect() function, in this manner: context.strokeRect(0, 0, 100, 100).

 5. Use the createLinearGradient() function to create a linear gradient, like this: gradient = context.createLinearGradient(0, 0, 100, 100).

 6. Use the createRadialGradient() function, like this: gradient = context.createRadialGradient(100, 100, 0, 100, 100, 50) to create a radial gradient.

 7. To specify the colors in a gradient, use the addColorStop() function, like this: gradient.addColorStop(0, ’yellow’).

 8. To use an image for a pattern fill, call the createPattern() function, like this: pattern = context.createPattern(image, ’repeat’).

 9. The four different types of pattern fill are repeat, no-repeat, repeat-x, and repeat-y, which are passed as string values in the second argument to the createPattern() function.

 10. To ensure an image has been loaded before you use it, you must attach a function to the image object’s onload event. Place the code that uses this image in the function.

Lesson 11 Answers

 1. To choose the font for writing to a canvas, you assign values to the font property, like this: context.font = ’16px Times’.

 2. To write outlined text to a canvas, you call the strokeText() function, like this: context.strokeText(’Text’, 100, 100).

 3. The relative measurement units supported by the canvas are em, ex, px, and %.

 4. The fixed measurement units supported by the canvas are in, cm, mm, pt, and pc.

 5. You write filled text to a canvas with the fillText() function, like this: context.fillText(’Text’, 100, 100).

 6. To center-align text on a canvas, you would use a command such as this: context.textAlign = ’center’.

 7. The full list of values supported by the textAlign property includes start, end, left, right, and center.

 8. To change the horizontal line about which text will be based, assign a value to the textBaseline property, like this: context.textBaseline = ’top’.

 9. The values supported by the textBaseline property are top, middle, alphabetic, hanging, and bottom.

 10. You can determine the width in pixels that a text-writing call will require by calling the measureText() function. The width property of the object it returns contains the text width.

Lesson 12 Answers

 1. You can change the width of subsequent lines drawn on the canvas by assigning a value to the lineWidth property, like this: context.lineWidth = 8.

 2. To change the way lines start and end, assign any of the values butt, round, or square to the lineCap property, like this: context.lineCap = ’round’. To change the way lines join to each other, assign any of the values round, bevel, or miter to the lineJoin property, like this: context.lineJoin = ’bevel’. To extend the limit of mitered line joins, you can assign a numeric value to the miterLimit property, like this: context.miterLimit = 7.

 3. To start and end a path, call the beginPath() and closePath() functions of the canvas context.

 4. To move the drawing position of a path without creating a line, use the moveTo() function, like this: context.moveTo(100, 100).

 5. To create a line within a path, you can use the lineTo() function, like this: context.lineTo(100, 100).

 6. To apply a path to the canvas as a line, use the stroke() function, like this: context.stroke(). To apply a path to the canvas as a filled area, use the fill() function, like this: context.fill().

 7. To draw an outlined rectangle, call the strokeRect() function, like this: context.strokeRect(0, 0, 100, 100). To draw a filled rectangle, call the fillRect() function, like this: context.fillRect(0, 0, 100, 100).

 8. You can create all or part of a circle using the arc() function, like this (which creates a circle): context.arc(100, 100, 50, 0, Math.PI * 2).

 9. To create an arc from one point to another based on imaginary tangents, call the arcTo() function, like this: context.arcTo(0, 0, 100, 0, 100).

 10. To create a curve that is modified by one imaginary attractor, you can call the quadraticCurveTo() function, passing the coordinates of the attractor and destination, like this: context.quadraticCurveTo(0, 0, 100, 100). To create a curve that is modified by two imaginary attractors, call the bezierCurveTo() function, passing the two sets of attractor coordinates and the destination, like this: context.bezierCurveTo(0, 0, 0, 100, 100, 100).

Lesson 13 Answers

 1. To draw an image to the canvas, you use the drawImage() function, like this: context.drawImage(image, 20, 20).

 2. To resize an image when it is drawn, you can add an additional pair of arguments to the drawImage() function for its new width and height in pixels, like this: context.drawImage(image, 20, 20, 100, 100).

 3. To ensure that an image is ready for use before drawing, attach a function to the image object’s onload event, and place your image-using code in that function.

 4. To easily copy one portion of a canvas to another, use the canvas itself as the image, like this: context.drawImage(canvas, 200, 200).

 5. The four properties used to add and modify shadows underneath drawn objects are shadowOffsetX, shadowOffsetY, shadowBlur, and shadowColor.

 6. To grab all the image pixel data from an image into a form that is editable, you can call the getImageData() function, in this way: imagedata = context.getImageData(0, 0, 100, 100).

 7. Once image data has been grabbed from a canvas and placed in an object, the object’s data sub-object is an array containing the pixel data.

 8. The four components of each pixel are its red, green, blue, and alpha transparency values. These appear sequentially in image data, with four elements to a pixel.

 9. The function used to write image data to the canvas is putImageData(), like this: context.putImageData(imagedata, 0, 0).

 10. To create a new object containing blank image data, you can call the createImageData() function, as in this example: imagedata = createImageData(320, 240).

Lesson 14 Answers

 1. To change the type of compositing used to draw to the canvas, assign one of the following values to the globalCompositeOperation property: source-over, source-in, source-out, source-atop, destination-over, destination-in, destination-out, destination-atop, lighter, darker, copy, or xor, like this: context.globalCompositeOperation = ’lighter’.

 2. To set the transparency of future drawing operations, assign a value between 0.0 (fully transparent) and 1.0 (no transparency) to the globalAlpha property, like this: context.globalAlpha = 0.3.

 3. To change the scale for future drawing operations, call the scale() function, in the following manner (which scales horizontal values up by 50 percent, and vertical ones down by 50 percent): context.scale(1.5, 0.5).

 4. You can easily resume previous settings after changing the scaling one or more times by first calling save(), like this: context.save(), issuing all your scaling and drawing commands, and then calling restore(), like this: context.restore() to return scaling to its previous state.

 5. To rotate the angle of future drawing operations, call the rotate() function, like this (which rotates by 90 degrees): context.rotate(Math.PI/2).

 6. There are 2 × π radians (or just over 6) in 360 degrees, and one radian is about 57 degrees. The best way to use radians is as fractions and multiples of Δ. One degree is Δ / 180, and the value of Δ is about 3.1415927, but you can use the JavaScript alternative of Math.PI so that you don’t have to remember the value. Conversion between the two can be achieved in JavaScript as follows: radians = Math.PI / 180 * degrees.

 7. To move the origin of future drawing operations from its default location at 0,0, call the translate() function, like this: context.translate(100, 100).

 8. To rotate an object around its center before drawing it to the canvas, first call the translate() function to move the origin, passing the center of where you intend to place the object as a pair of coordinates. Next, issue the call to rotate(), and then draw the object on the canvas with its top-left corner 50 percent of its width to the left of the new origin, and 50 percent of its height up from the new origin. For example, if the object is a square that is 100 pixels wide and high, the destination location should be at -50,-50 (since the new origin is at the object’s center).

 9. You can scale, rotate, and skew all at the same time by using the transform() function, like this: context.transform(1.5, 0.5, 0.5, 1.5, 10, 10).

 10. To create absolute transformations (as opposed to relative ones from the current transform settings), you can call the setTransform() function, which is the same as transform() except that the scaling and other factors are first reset before the supplied values are applied.

Lesson 15 Answers

 1. The most common form of geolocation positioning hardware is called GPS (for Global Positioning System). It uses a number of orbiting satellites to triangulate a device’s location very accurately, including height above sea level.

 2. To determine whether a browser supports geolocation, test whether the type of the geolocation property is a value of undefined (if so, geolocation is not available), like this: if (typeof navigator.geolocation == ’undefined’) ….

 3. To request location data from a browser, call the getCurrentPosition() function, passing it the names of two functions—one to be called if permission to access the user’s location is granted, the other to be called if it isn’t, like this: navigator.geolocation.getCurrentPosition(granted, denied).

 4. If the user grants permission for you to access their location, the data will be supplied to the function you created to receive it in the form of a position object. This object will have two properties for the latitude and longitude: position.coords.latitude and position.coords.longitude.

 5. If the user doesn’t grant permission to access their location, an error object is supplied to the function you created to handle this instance. This object will have a code property containing a number between 1 and 4 indicating the error type.

 6. The API at https://maps.googleapis.com/maps/api/js?sensor=false will give you access to Google Maps if you supply it as the value to the src attribute of a <script> tag.

 7. To pass the latitude and longitude to display to the Google Maps API, you should supply them as arguments to the LatLng() function, like this: new google.maps.LatLng(lat, long).

 8. The Google Maps zoom property accepts values between 1 for fully zoomed out, and 20 for fully zoomed in.

 9. The types of Google Maps that can be displayed are satellite, road map, or hybrid, by attaching one of the constants SATELLITE, ROADMAP, or HYBRID to the MapTypeId object, like this: google.maps.MapTypeId.HYBRID.

 10. IP addresses are not a very accurate form of geolocation for a number of reasons, including the fact that an IP address can apply to a proxy server anywhere in the world. But even if not, a local ISP might share the same IP numbers among its customers over a wide geographical area. At best, IP numbers should be used to offer just a hint as to a user’s very rough location when a better location method is not available.

Lesson 16 Answers

 1. To provide access to typing into an input field without the user first having to click it, use the autofocus attribute, like this: <input type=’text’ name=’name’ autofocus=’autofocus’>.

 2. You can allow previous values that have been entered for the current input field’s name to be selected by the user with the autocomplete attribute, like this: <input type=’text’ name=’name’ autocomplete=’on’>.

 3. The list attribute supplies a list id to an input from which a selection can be made by the user, like this: list=’items’. The list itself should be a collection of <option> elements inside a <datalist> element given the id name supplied as the value for the list attribute, like this: <datalist id=’items’>.

 4. To set minimum and maximum limits for an input, assign values to the min and max attributes, like this: <input type=’number’ name=’age’ min=’13’ max=’99’>.

 5. To enable uploading of more than one file at a time via a form, use the multiple attribute, like this: <input type=’file’ name=’files’ multiple=’multiple’>.

 6. You can place text in an empty input field to prompt the user for the type of input expected, by assigning that text to the placeholder attribute, like this: <input type=’text’ name=’username’ placeholder=’Enter Username’>.

 7. To ensure that an input must be completed before a form is submitted, you use the required attribute, like this: <input type=’password’ name=’pass’ required=’required’>.

 8. The attribute pattern=’[\w]{5,10}’ tells the web browser not to allow the form to be submitted unless this input field consists of between 5 and 10 (inclusive) uppercase and/or lowercase letters, and/or digits, and/or the underline character (\w means any word character).

 9. You can offer a color picker in an input (in browsers that support it) by using an input type of color, like this: <input name=’background’ type=’color’>.

 10. You can call up a calendar date picker in an input (in browsers that support it) by using an input type of date, like this: <input name=’meeting’ type=’date’>.

Lesson 17 Answers

 1. Local storage is a better solution than cookies because it provides over a thousand times the storage capacity per domain, and it is easily accessed as key and value pairs.

 2. You can determine whether local storage is available in a browser by testing the type of the localStorage object, like this: if (typeof localStorage == ’undefined’). If it is undefined, then local storage is not available.

 3. To store an item of local storage data, use the setItem() function, like this: localStorage.setItem(’key’, ’value’).

 4. To retrieve an item of local storage data, use the getItem() function, like this: value = localStorage.getItem(’key’).

 5. To remove an item from local storage, use the removeItem() function, like this: localStorage.removeItem(’key’).

 6. To clear all the data relating to your domain in local storage, use the clear() function, like this: localStorage.clear().

 7. To post a message to another document loaded into the browser, call the postMessage() function, like this: window.postMessage(’Message text’, ’http://domain.com’).

 8. To listen for messages from other loaded documents, attach a function to the onmessage event of the window, like this: window.onmessage = function(event) {}. Within the curly braces you can access event.data to read the message.

 9. To ensure that you post messages only to the documents you want to receive them, pass the correct domain as the second argument to postMessage().

 10. To ignore any message received from documents from which you do not wish to receive them, discard those that do not originate from your domain by checking the origin property of the onmessage event object, like this: if (event.origin == ’http://domain.com’).

Lesson 18 Answers

 1. To embed audio in an HTML5 document, you use the <audio> tag.

 2. The four types of audio format supported by HTML5 browsers are AAC, MP3, PCM, and OGG Vorbis.

 3. To ensure that your audio will play on all major browsers and platforms, you need to provide your audio in two formats. One of these should be OGG Vorbis, and the other can be either AAC or MP3.

 4. The purpose of the <source> tag is to offer an audio file to the browser. If the browser supports the audio type and it is the first audio file supported, then it will be selected for playing.

 5. For playing audio, the <source> tag requires two attributes to be supplied to it: the URL of the audio file in the src attribute, and the type of the audio file in the type attribute, like this: <source src=’music.mp3’ type=’audio/mpeg’>.

 6. To make audio play on page load, supply the autoplay attribute to the <audio> tag, like this: <audio autoplay>.

 7. You can control whether or not the audio controls are displayed by either including or omitting the controls attribute from the <audio> tag, like this: <audio controls>.

 8. To set a piece of audio to play over and over, add the loop attribute to the <audio> tag, like this: <audio loop>.

 9. To cause audio to begin loading even before the user selects Play, add the preload attribute to the <audio> tag, like this: <audio preload>.

 10. You can support older browsers that do not recognize HTML5 audio by embedding a Flash audio player within the <audio> and </audio> tags. HTML5 browsers will ignore it, while older ones will ignore the <audio> tags and will run the Flash plug-in.

Lesson 19 Answers

 1. To embed video in an HTML5 document, you use the <video> tag.

 2. The three types of video format supported by HTML5 browsers are MP4/H.264, OGG/Theora, and WebM/VP8.

 3. To ensure that your video will play on all major browsers and platforms, you need to provide your video in two formats. One of these should be MP4, and the other should be OGG.

 4. The purpose of the <source> tag is to offer a video file to the browser. If the browser supports the video type and it is the first video file supported, then it will be selected for playing.

 5. For playing audio, the <source> tag requires two attributes to be supplied to it: the URL of the video file in the src attribute, and the type of the video file in the type attribute, like this: <source src=’video.mp4’ type=’video/mp4’>.

 6. To make video play on page load, supply the autoplay attribute to the <video> tag, like this: <video autoplay>.

 7. You can control whether or not the video controls are displayed by either including or omitting the controls attribute from the <video> tag, like this: <video controls>.

 8. To set a video’s width and height, assign values to the width and height attributes of the <video> tag, like this: <video width=’640’ height=’480’>.

 9. To display an image of your choice as a placeholder for where the video will play, use the poster attribute in the <video> tag, like this: <video poster=’myimage.jpg’>.

 10. You can support older browsers that do not recognize HTML5 video by embedding a Flash video player within the <video> and </video> tags. HTML5 browsers will ignore it, while older ones will ignore the <video> tags and will run the Flash plug-in.

Lesson 20 Answers

 1. Microdata makes text that is easily understandable by people due to context equally understandable to machines, by explaining each part.

 2. Two attributes used to denote microdata are itemtype for the type of microdata, and itemprop for each property. Other microdata attributes include itemid, itemref, and itemscope.

 3. Web workers are JavaScript programs that are set to work in the background under the control of the browser to undertake tasks separate from the main foreground program.

 4. You create a new web worker by calling the Worker() function, passing it the URL of a JavaScript program to run, like this: worker = new Worker (’program.js’).

 5. You receive messages from a web worker by attaching a function to the onmessage event of the worker object that is returned by the call to Worker(). The data property of the object passed to this function contains the message.

 6. Offline web applications are online web applications that can also run offline because all their associated files get downloaded locally by the browser.

 7. Offline web applications use the MIME type text/cache-manifest. When a web browser encounters a file of this type, it knows that it contains information about the files it should download to enable an app to run offline.

 8. In order to implement drag and drop in a document, you need to attach handler functions to the ondragstart event of any object to be dragged. You must also attach to the ondragover and ondrop events of any element into which items can be dropped.

 9. The purpose of calling the preventDefault() function in the drag-and-drop handlers is to override the default action of disallowing drag-and-drop operations, thus making these operations available.

 10. The functions that handle the passing of dragged-and-dropped items are setData() and getData(), which are methods of the dataTransfer property of the events being handled.

 Index

Please note that index links point to page beginnings from the print edition. Locations are approximate in e-readers, and you may need to page down one or more times after clicking a link to get to the indexed material.

A

<a> tag, 58

AAC codec, 214

<abbr> tag, 71

abbreviations, 71

absolute URLs, 55

<acronym> tag, 71

action attribute, 61

addColorStop() function, 115–120

<address> tag, 72

Ajax technology, 60

align attribute

 images, 36, 40

 tables, 45–46

alphabetic value for text, 129

alt attribute, 36

ampersands (&) for query strings, 57

anchors for hyperlinks, 59–60

Android operating system

 audio support, 214

 video support, 220

angle brackets (<>) for tags, 8

angles for rotation, 174–176

appendChild() method, 232

Apple iOS operating system

 audio support, 214

 video support, 220

<applet> tag, 72

arc() function, 144–147

arcTo() function, 147–149

<area> tag, 72

attributes overview, 8–9

audio, 213

 <audio> and <source> tags, 215–217

 codecs, 213–214

 overview, 93–94

<audio> tag, 93–94, 215–217

audio.swf Flash player, 216

autocomplete attribute, 92, 194

autofocus attribute, 92, 194

autoplay attribute

 audio, 216

 video, 221

B

 tag, 24

background processing, 95, 227–229

<base> tag, 73–74

<basefont> tag, 29–30, 74

<bdo> tag, 74

beginPath() function, 137

Berners-Lee, Timothy, 3–4

bezierCurveTo() function, 150–151

bgcolor attribute

 fonts, 30

 tables, 45

<big> tag, 24, 75

Bing maps, 190

<blockquote> tag, 75–76

blur for shadows, 157

body sections, 19

 comments, 19–20

 <div> and tags, 20–21

 headings, 21–22

 line breaks, 22–23

 paragraphs, 22

 text emphasis, 24–26

<body> tag, 16

bold text, 24

border attribute

 images, 36

 tables, 45

bordercolor attribute, 45

bottom value for text, 129

 tag, 22–23

browsers

 audio support, 214, 216–217

 invention of, 3

 video support, 220

<button> tag, 64–65

C

canvas

 accessing, 105–106

 <canvas> tag, 104–105

 compositing and transparency, 167–171

 converting to images, 106–108

 curves, 144–151

 gradients, 114–120

 images, 153–156

 JavaScript overview, 97–104

 lines, 135–137

 overview, 88–90

 paths, 137–143

 patterns, 120–123

 pixel editing, 159–164

 rectangles, 111–114

 shadows, 156–159

 as source image, 156

 text. See text

 transformations, 170–181

<canvas> tag, 88–90, 104–105

<caption> tag, 48

Cascading Style Sheets (CSS)

 description, 9

 emphasis, 26

 images, 39

 including, 13–14

cellpadding attribute, 45

cellspacing attribute, 45

<center> tag, 25, 76

checkbox attribute, 63

Chrome browser

 audio support, 214

 video support, 220

citations, 76

<cite> tag, 76

class attribute, 9

clear attribute

 images, 40

 line breaks, 23

clear() function, 208, 210

clearRect() function, 113

clip() function, 140–143, 159

closePath() function, 137

cm font units, 126

<code> tag, 77–78

codecs

 audio, 213–214

 video, 219–223

<col> tag, 78

<colgroup> tag, 78

color

 canvas, 107

 columns, 78

 curves, 148

 fills, 112–113

 fonts, 30–33, 74

 form input, 201

 gradients, 115, 117–120

 images, 36

 pixels. See pixel editing

 rectangles, 111–113

 shadows, 157, 159

 tables, 45

 text, 130–132

color input type, 201

colspan attribute, 49–52

columns in tables, 45–52

comments

 conditional, 70

 inserting, 19–20

 JavaScript, 103

comparisons, 70

compositing, 167

 globalAlpha property, 169–170

 globalCompositeOperation property, 167–169

conditional HTML, 69–82

controls attribute

 audio, 216

 video, 221

converting

 canvas to images, 106–108

 degrees to radians, 176

cookies, 93

coordinates

 arcs, 144

 gradients, 114–115, 117

copy value for compositing, 169

createImageData() function, 164

createLinearGradient() function, 114–117

createPattern() function, 121–123, 133

createRadialGradient() function, 117

cross-document messaging, 210–212

CSS (Cascading Style Sheets)

 description, 9

 emphasis, 26

 images, 39

 including, 13–14

curves, 144

 arc(), 144–147

 arcTo(), 147–149

 bezierCurveTo(), 150–151

 quadraticCurveTo(), 149–150

D

darker value in compositing, 169

data lists for forms, 92–93

data[] array, 160–161

<datalist> tag, 196–197

date input type, 201

date pickers, 201–202

datetime input type, 202

datetime-local input type, 202

<dd> tag, 44

defaults

 audio support, 214

 fonts, 74

 gradients, 114

 image alignment, 40

 image size, 36

 image type, 108

 lists, 42–44

 paragraph spacing, 22

 video support, 220

definition lists, 44

degrees, 176

 tag, 25, 79

denied() function, 187

destination-atop value, 169

destination-in value, 169

destination-out value, 169

destination-over value, 169

<dfn> tag, 71

dir attribute, 74

<dir> tag, 78

direction

 arcs, 145, 147

 text, 74

<div> tag

 geolocation, 188

 overview, 20–21

<dl> tag, 44

DNS (Domain Name System), 7

<!DOCTYPE> declarations, 11–12

DOM (Document Object Model), 97–98

Domain Name System (DNS), 7

dots (.) in relative URLs, 58

double quotation marks (") in tags, 8

drag and drop support, 231–232

drawImage() function, 153–156

<dt> tag, 44

E

em font units, 126

 tag, 25

email input type, 203

<embed> tag, 94

emphasis for text, 24–26

enctype attribute, 61

equal signs (=) in attributes, 8

events

 drag and drop, 231–232

 images, 121–122, 132

 web workers, 228–229

ex font units, 126

exclamation points (!) in comments, 19, 70

extending rows and columns, 49–52

F

<fieldset> tag, 79

fill() function, 140

fillRect() function, 90, 111–112, 116

fillstyle property, 112–113

fillText() function, 129–133

Firefox browser

 audio support, 214

 video support, 220

Flash programming environment, 213–214

flowplayer.swf files, 222–223

font property, 125–126

 tag, 29–35, 80

fonts. See also text

 color, 30–33

 faces, 29–31, 33–35

 font property, 125–126

 size units, 126

form attribute, 194–195

formaction attribute, 92, 195

formenctype attribute, 195

formmethod attribute, 195

formnovalidate attribute, 92, 196, 198

forms

 autocomplete attribute, 194

 autofocus attribute, 194

 <button> tag, 64–65

 creating, 60–62

 date and time pickers, 201–202

 fields, 79

 form attribute, 194–195

 HTML5 enhancements, 92–93

 input types, 200–204

 <input> tag, 63

 JavaScript for, 99–108

 <label> tag, 65

 name attribute, 63

 new attributes, 193

 overrides, 195–200

 <select> tag, 64

 <textarea> tag, 64

 value attribute, 63

<forms> tag, 61

formtarget attribute, 92, 196

frames, 65–66

<frameset> tag, 65, 80

G

gateways, 5

geolocation

 document example, 188–190

 geolocation property, 186

 getCurrentPosition(), 186–187

 GPS service, 191–192

 JavaScript for, 185–190

 overview, 90–91

geolocation property, 186

Get requests, 7

getContext() function, 106

getCurrentPosition() function, 186–187

getElementById() function, 100

getImageData() function, 159–160

getItem() function, 208

.gif images, 36

Global Positioning Systems (GPS), 91, 191–192

globalAlpha property, 169–170

globalCompositeOperation property, 167–169

Google Android operating system

 audio support, 214

 video support, 220

Google Chrome browser

 audio support, 214

 video support, 220

Google maps, 188–190

GPS (Global Positioning Systems), 91, 191–192

gradients

 addColorStop(), 117–120

 createLinearGradient(), 116–117

 createRadialGradient(), 117

 creating, 114–116

 text, 130–131

granted() function, 186–187

greater than signs (>) in comments, 19, 70

H

<h1> tag, 21–22

H.264 codec, 220

hanging value for text, 129

<head> tag, 13

headings, 21–22

height attribute

 canvas, 105

 forms, 196

 images, 36

 tables, 45–46

 video, 221

hexadecimal digits for color, 33

hidden attribute, 63

horizontal rules, 80

<hr> tag, 80

.htaccess file, 230

.htm and .html extensions, 6

<html> tag, 12–13

HTML5 overview, 87

HTTP (Hyper Text Transfer Protocol), 4–5

hyperlinks

 creating, 55–56, 58–60

 query strings, 56–57

 relative URLs, 57–58

hyphens (-) in comments, 19, 70

I

<i> tag, 25

id attribute, 9

ideographic value for text, 129

ids for form access, 100

if statements, 70

<iframe> tag, 66, 80–81

iframes, 65–66, 80–81

Image() function, 121

images

 canvas as source, 156

 converting canvas to, 106–108

 displaying, 36–40

 drawImage(), 153–156

 URLs in, 59

imagetype argument, 108

 tag, 36–40

in font units, 126

input types in forms, 200–204

<input> tag, 63, 92–93

Internet Explorer browser

 audio support, 214

 conditional HTML for, 69–82

 local documents, 12

 video support, 220

inverting images, 163

IP (Internet Protocol) addresses for geolocation, 191

<isindex> tag, 81

isPointInPath() function, 143

italic text, 25

itemid attribute, 95, 225

itemprop attribute, 95, 225

itemref attribute, 95, 225

itemscope attribute, 95, 225

itemtype attribute, 95, 225

J

JavaScript, 88

 canvas, 89–90, 105–106

 form element access from, 99–108

 for geolocation, 185–190

 incorporating, 14–15

 overview, 97–99

joined lines, 136–137

.jpg images, 36

K

<kbd> tag, 78

L

<label> tag, 65

lat setting for geolocation, 190

layout, 11

 <body> tag, 16

 <!DOCTYPE> declarations, 11–12

 <head> tag, 13

 <html> tag, 12–13

 JavaScript, 14–15

 metadata, 15–16

 style sheets, 13–14

 <title> tag, 13

<legend> tag, 79

less than signs (<) in comments, 19, 70

 tag, 42

lighter value, 169

line breaks, 22–23

linear gradients, 114–116

lineCap property, 136

lineJoin property, 136–137

lines

 lineCap property, 136

 lineJoin property, 136–137

 lineWidth property, 128, 135

 miterLimit property, 137

lineTo() function, 137–138

lineWidth property, 128, 135

<link> tag, 14

links

 creating, 55–56, 58–60

 query strings, 56–57

 relative URLs, 57–58

list attribute, 92, 196–197

lists

 building, 41–43

 defaults, 43–44

 definition, 44

local documents in Internet Explorer, 12

local storage, 93, 207–210

long setting for geolocation, 190

loop attribute

 audio, 216

 video, 221

lossless codecs, 214

lowercase style, 23

lt keyword, 70

M

MAC (Media Access Control) addresses for geolocation, 191

mapTypeId setting for geolocation, 190

The Mark of the Web, 71

Math.PI value, 146, 174

max attribute, 93, 197

Media Access Control (MAC) addresses for geolocation, 191

<menu> tag, 81

messaging, cross-document, 210–212

<meta> tag, 15–16

metadata, 15–16

method attribute, 61

methods, 101

metrics object, 133–134

microdata, 95, 225–227

middle value for text, 129

MIME (Multipurpose Internet Mail Extensions), 229

min attribute, 93, 197

miterLimit property, 137

mm font units, 126

month input type, 202

moveTo() function, 137–138

Mozilla Firefox browser

 audio support, 214

 video support, 220

MP3 codec, 214

MP4 codec, 219

multiple attribute, 93, 198

Multipurpose Internet Mail Extensions (MIME), 229

N

name attribute

 forms, 63

 hyperlinks, 59–60

named colors, 31–32

negative images, 163

new keyword, 121

<noframes> tag, 65

no-repeat type for patterns, 121–122, 133

not operator, 70–71

novalidate attribute, 198

number input type, 203

numbers for color, 33

O

O() function, 101–102

offline web applications, 229–231

OGG codec, 214, 219

 tag, 42

ondragover events, 231–232

ondragstart events, 231–232

ondrop events, 231–232

onload events, 121–122, 132, 154, 160

onmessage event, 228–229

Opera Firefox browser

 audio support, 214

 video support, 220

<optgroup> tag, 81–82

option groups, 81–82

<option> tag, 64, 81, 196–197

ordered lists, 41–42

origin, canvas, 177

P

<p> tag, 22

paragraphs, 22

password attribute, 63

paths, 137

 beginPath() and closePath(), 137

 clip(), 140–143

 fill(), 140

 isPointInPath(), 143

 moveTo() and lineTo(), 137–138

 rect(), 139

 stroke(), 138

pattern attribute, 93, 199

patterns

 canvas, 120–123

 regular expressions, 199

 text, 130, 132–133

pc font units, 126

PCM codec, 214

percentages for font units, 126

periods (.) in relative URLs, 58

pixel editing, 159

 createImageData(), 164

 data[] array, 160–161

 getImageData(), 159–160

 putImageData(), 161–164

.pl and .php extensions, 7

placeholder attribute, 93, 199–200

.png images, 36

Post requests, 7

poster attribute, 221

postMessage() function, 210–212

pound symbol (#)

 color, 33

 hyperlink anchors, 59

<pre> tag, 62, 77

preload attribute

 audio, 216

 video, 221

programming code, 77–78

proxies, 5

pt font units, 126

putImageData() function, 161–164

px font units, 126

Q

<q> tag, 75–76

quadraticCurveTo() function, 149–150

query strings for hyperlinks, 56–57

question mark character (?) in query strings, 57

QuickTime media player, 214

quotations, 75–76

R

radial gradients, 117

radian offsets for arcs, 144

radians, 174–176

radio attribute, 63

radius in arcs, 144

range input type, 203

rect() function, 139

rectangles

 clearRect(), 113

 fillRect(), 112

 fillstyle property, 112–113

 rect(), 139

 scaling, 171–173

 strokeRect(), 113–114

regular expressions, 199

relative URLs, 57–58

removeItem() function, 208–210

repeat type for patterns, 121

repeat-x type for patterns, 121–122

repeat-y type for patterns, 121–122

request/response sequence, 6–7

required attribute, 200

restore() function, 172–174

retrieving local storage, 208–209

road maps, 190

rotate() function, 174–176

routers, 5

rows in tables, 45–52

rowspan attribute, 49–52

S

S() function, 102–104

<s> tag, 25

Safari browser

 audio support, 214

 form support, 197–199

 video support, 220

<samp> tag, 78

satellite maps, 190

save() function, 172–174

scale() function, 170–174

<script> tag, 14–15, 99–108

search input type, 204

security zones, 71

<select> tag, 64

serving pages, 5

setData() method, 232

setInterval() function, 231

setItem() function, 208–209

setTransform() function, 181

shadowBlur value, 157

shadowColor value, 157

shadowOffsetX value, 156

shadowOffsetY value, 157

shadows, 156–158

shearing squares, 179–180

single quotation marks (’) in tags, 8

size

 images, 155

 text, 30, 75, 126

slash (/) characters

 comments, 19, 103

 in tags, 8

 in URLs, 58

<small> tag, 25, 75

<source> tag

 audio, 215–217

 video, 220–222

source-atop property, 169

source-in property, 168

source-out property, 168

source-over value, 167–168

spaces in tags, 62

 tag, 20–21

src attribute

 audio, 216

 images, 36

 video, 221

start attribute, 43

step attribute, 93, 200

storage, local, 93, 207–210

<strike> tag, 25

strikethrough text, 25

stroke() function, 138

strokeRect() function, 113–114

strokeText() function, 127

 tag, 25

style attribute, 9

style sheets

 description, 9

 emphasis, 26

 images, 39

 including, 13–14

<style> tag, 14

<sub> tag, 26, 82

submit attribute, 63

subscripted text, 26, 82

<sup> tag, 26, 82

superscripted text, 26, 82

T

<table> tag, 45–46

tables

 creating, 44–45

 rows and columns, 45–52, 78

tags

 attributes, 8–9

 description, 8

target attribute in hyperlinks, 59

<td> tag, 45–46

tel input type, 204

text

 centering, 76

 citations, 76

 deleted, 79

 direction, 74

 emphasis, 24–26

 fillText(), 129–133

 font property, 125–126

 font size units, 126

 programming code, 77–78

 quotations, 75–76

 size, 75

 strokeText(), 127

 textAlign property, 127–128

 textBaseline property, 129

 width, 133–134

text attribute, 63

textAlign property, 127–128

<textarea> tag, 64

textBaseline property, 129

<th> tag, 47

Theora codec, 220

time input type, 202

time pickers, 201–202

title attribute, 9

<title> tag, 13

toDataURL() function, 107–108

top value for text, 129

<tr> tag, 45–46

transform() function, 178–180

transformations, 170

 rotate(), 174–176

 scale(), 170–174

 setTransform(), 181

 transform(), 178–180

 translate(), 176–177

translate() function, 176–177

transparency, 169–170

<tt> tag, 78

type attribute

 audio, 216

 forms, 93

 lists, 43

 video, 221

U

<u> tag, 26

 tag, 43

underlined text, 26

unordered lists, 42–43

url input type, 204

URLs (Uniform Resource Locators)

 absolute, 55

 Get requests, 7

 in images, 59

 relative, 57–58

 request/response sequence, 6–7

V

value attribute, 63

versions, testing for, 70–71

video, 219

 codecs, 219–223

 overview, 93–94

<video> tag

 new, 93–94

 video support, 220–222

Vorbis codec, 214

VP8 codec, 220

W

web applications

 description, 95

 offline, 229–231

web messaging, 210–212

web workers, 95, 227–229

WebM codec, 220

week input type, 202

width and width attribute

 canvas, 105

 forms, 196

 images, 36

 lines, 135

 tables, 45–46

 text, 133–134

 video, 221

X

X coordinates for arcs, 144

xor value, 169

Y

Y coordinates for arcs, 144

Z

zoom setting for geolocation, 190

OEBPS/Images/image00330.jpeg
Dammmp. & colspan

€2 Cfh [qmueShun

IEEE

JMML
HEnn

1L

OEBPS/Images/image00451.jpeg
context.ront
context.fillText ('HTMLS',

OEBPS/Images/image00572.jpeg
/ [} The range data Type X

€ & C i Qrangehtm

B ‘Submit

OEBPS/Images/image00331.jpeg

OEBPS/Images/image00452.jpeg
filledfonts.htm

HTMLY

OEBPS/Images/image00573.jpeg

OEBPS/Images/image00328.jpeg
<table border='1l"' width='450' height="450">
<tr align='center's
<td width='25%'>1</td>
<td width='25%'>2</td>
<td width='25%'>3</td>
<td width='25%"'>4</td>
</tr>

<tr align='center's
<td>12</td>
<td colspan='2' rowspan:

2" bgcolo:

lightgray'></td>

<t-- Cell omitted here -
<td>5</td>
</tr>

OEBPS/Images/image00449.jpeg
context.textBaseline

'top’
context .strokeText ('top', 0, 100)

OEBPS/Images/image00570.jpeg

OEBPS/Images/image00329.jpeg
<tr align='center's>
<td>1l</td>
<!-- Cell omitted here
<!-- Cell omitted here
<td>6</td>
</tr>
<tr align='center's
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
</tr>
</table>

-5

-5

OEBPS/Images/image00450.jpeg
[) textBaseline x

€ & C fi Q textbaselinehtm

— el bottom alphabetic

hanging

OEBPS/Images/image00571.jpeg
[} Date & Time Pickers x
€ 2 C fi QA dateandtimehtm

—— [e77ea7z0se =EY
P— ek 27, 015 XAV
Encer Time: EErs

fcer Daverine: [w0izmEE
Encer Locad vacetines [12/03/2018 1275 XEY

OEBPS/Images/image00334.jpeg
View
View
View
View
View

the
the
the
the
the

agenda
agenda
agenda
agenda
agenda

here.

here
here.

here
here</as.

OEBPS/Images/image00332.jpeg
B html5 - Google Search

€ 2 C # [Dhtps: I | =
Google | nms 1 a |
Web Images News Videos Books More~ Search tools I

About 324,000,000 results (0.27 seconds)

Ad related to html5 ®

HTMLS vs. Native - One Dev Platform, Multiple Devices - Kony.com
‘www_kony.com/HTMLS+Native ~

Download the Free Whitepaper Now!

en.wiipedia orgik/HTMLS ~

HTMLS is a markup language used for structuring and presenting content for the World
Wide Web and a core technology of the Intemet. 1t is the fifth revision of ...
Comparison of HTMLS and Flash - HTMLS in mobile devices - Canvas element

OEBPS/Images/image00453.jpeg
dlent = context.createlinearGradient(205,25, 205, 150)
gradient.addColorStop(0, '#FFF')
gradient.addColorStop (1, '#000')
context.fillStyle = gradient
context .fillText ('HTMLS', 0, 150)

OEBPS/Images/image00574.jpeg
ocalStorage.setlItem('username', 'BObama'
localStorage.setItem('password', 'IAmThePrez')

OEBPS/Images/image00333.jpeg
[E html5 - Recherche Google X

€ > CH

htmI5&hl;

B htips//irsw googleconysedtch

Google

htmli5

Web Images Actualités Vidéos Liwes Plus~ Outils de recherche

Environ 338 000 000 résultats (0,31 secondes)

Annonce relative & html5 ®

HTMLS5 vs Nati -OneD Pla form, Multiple Devices - Kony
www_kony com/HTMLE+N:

Download the Free Wm:paper Now!

ool Risbershaz dan kel i a fangal. Veis e ko vive
langue de recherche sur la page Préférences.

ikipédia
1r wikipedia org/wik/HTMLS ~
HTML5 (HyperText Markup Language 5) est la demiére révision majeure dHTML (format
de données congu pour représenter les pages web). Cette version est ...
Contexte historique - Changements par rapport 4 HTML

OEBPS/Images/image00454.jpeg
Filled Font Eamples X \

€« C fi A filledfontshtm

OEBPS/Images/image00575.jpeg
ame

localStorage.getltem('username’)
password = localStorage.getItem('password’)

OEBPS/Images/image00455.jpeg
lent
gradient
gradient
gradient
gradient

= context.createRadialGradient (205,
.addColorStop (0.
.addColorStop (0.
.addColorStop (0
.addColorStop (0.
gradient.
gradient .
gradient .
context.fillStyle = gradient
context . fillText ('HTMLS ',

addcolorstop (0
addColorStop (0.
addColorStop (1.

00,
16,

33

50,

.66,

83,
00,

0,

‘red')
‘orange')
ryellow')
'green')
'blue’)
'indigo')
'violet')

150)

230,

120,

205,

230,

240)

OEBPS/Images/image00576.jpeg
localStorage.setltem('key', 'value')
localStorage['key'] = 'value'

OEBPS/Images/image00337.jpeg
<torm method='post' action='program.php'><pre>

Input type: text <input type='text' name='f1' size='26'>

Input type: password <input type='password' name='f2' size='26'>

Input type: radio <input type='radio’' name='£3' value='1'>1
Input type: radio <input type='radio’ name='£3' value='2'>2
Input type: checkbox <input checkbox' nam value='1'>]
Input type: checkbox <input checkbox' nam value='2"'>2

Input type: hidden <input type='hidden' name='f5's>

' cols:

Textarea: <textarea name='f6' rows 20'></textarea>
Select: <select name='f7'>
<option value='1'>First Option</options>

<option value='2' selected='selected's>

Second option</option>
<option value='3'>Third Option</option>
</select>

Button: <button name= 'f8' value='f8'>Button</button>

OEBPS/Images/image00458.jpeg
/[Filed Font bamples x|

Q filledfonts.ntm

OEBPS/Images/image00579.jpeg
'

else

{

document .write("Local storage available.")

localStorage.setItem('username’,
localStorage.setItem('password',

username =

password =

alert ("Data

'BObama ')
' IAmThePrez')

localStorage.getItem('username')
localStorage.getItem('password')

retrieved: username

password

'" 4+ username +

" 4 password + "'.

")

OEBPS/Images/image00338.jpeg
abel: <label>
<input type= 'checkbox' name= 'agree’
value='yes'>I agree
</1abel>

Input type: submit <input type='submit's
</pres</forms

OEBPS/Images/image00459.jpeg
context.font = 'llé6pt Impact'
image = new Image()
‘marble.jpg’

image.src

image.onload = function()

{
pattern = context.createPattern(image, 'no-repeat')
context.fillStyle = pattern
context.fillText ('HTMLS', 0, 150)

OEBPS/Images/image00580.jpeg
The page at localhost says:

Data retrieved: username = 'BObamal, password =

IAmThePrez'.

OEBPS/Images/image00335.jpeg
<1mg
<img
<img
<img
<img
cimg

src='image.]jpg’'>

src='meetings/image.jpg'>

src='../image.jpg'>
src='../misc/image.jpg’>
sro='/image.jpg’>

sre:

Thtt

Faserver:com/folderisibra/inage:

ipg' >

OEBPS/Images/image00456.jpeg
/[Filled Font Examples x|

€ 2 C fi A filledfontshtm

TN

OEBPS/Images/image00577.jpeg
value

localStorage.getlitem('key')
localStorage['key']

OEBPS/Images/image00336.jpeg
W HTML element - Wikiped: X
€ > C # [[) enwikipediaorg/wiki/HTML anchor#Anchor 1¢|

Anchor [edit]

<a>...
An anchor element is called an anchor because web
designers can use it to anchor a URL to some text on a
web page. When users view the web page in a browser,
they can click the text to activate the link and visit the
page whose URL is in the link 121
In HTML, an anchor can be either the origin or the target
(destination) end of a hyperlink.
With the attibute hre (hypertext reference [1] @), the
anchor becomes a hyperlink to either another part of the
document or another resource (e.g. a webpage) using an
extemal URL
Alternatively (and sometimes concurrently), vith the
name or 1a HTML attributes set, the element becomes a
target. A Uniform Resource Locator can link to this target

y

|m

OEBPS/Images/image00457.jpeg
gradient
gradient
gradient
gradient

gradient.

gradient

gradient.
gradient.

-addColorStop (0.
.addColorstop (0.
.addColorstop (0.
.addColorStop (0.
addColorStop (0.
.addColorStop (0.
addColorStop (0.
addColorStop (0.

00,
01,
1s,
33,
50,
66,
83,
99,

gradient.addColorStop (1.00,

'white') // Clear inner to white
'red') // Changed from 0.00
‘orange)

'yellow')

igreen')

‘blue')

'indigo')

'violet') // Changed from 1.00
‘white') // Clear outer to white

OEBPS/Images/image00578.jpeg
1t (typeof localStorage

'undefined’)

document .write ("Local storage unavailable.")

OEBPS/Images/image00319.jpeg
='cyan'>

200" >Heading 1</th>
125% ' >Heading 2</th>
=125% ' >Heading 3</th>

OEBPS/Images/image00440.jpeg

OEBPS/Images/image00561.jpeg
<torm action='prog.php' method='post'>
<input type='text' name='field's
<input type='submit' formaction='prog2.php'>

</forms>

OEBPS/Images/image00320.jpeg
[Asimple Table x

€ & C fi Qtablelhtm

Heading 1 Heading2 || Heading3

Row 2, Col 1 Row2,Col2 [[Row2, Col3

OEBPS/Images/image00441.jpeg
<canvas id='example' wi

<scripts

410' height='170'></canvas>

OEBPS/Images/image00562.jpeg
[) Using Width & Height x

€ & C fi a widthandheighthtm

OEBPS/Images/image00317.jpeg
<table border='l' bgcolor='cyan' width='450"' height='200"
cellpadding='5' cellspacing='5'>
<tr bgcolor='green's
<td width='200'>Row 1, Col 1</td>
<td width='25%'>Row 1, Col 2</td>
<td width='25%'>Row 1, Col 3</td>

</tr>
<tr bgcolor='yellow's
<td>Row 2, Col 1</td>
<td>Row 2, Col 2</td>
<td>Row 2, Col 3</td>
</tr>
</table>

OEBPS/Images/image00438.jpeg
[} Patter Bamples x

< C ff Q patternshtm

OEBPS/Images/image00559.jpeg
<torm 1id='myform' action='prog.php' method='post' autocomplete='on'>
<input id='myfield' type='text' name='field' autofocus='autofocus's
</form>

OEBPS/Images/image00318.jpeg
[A simple Table *\

€ > C fi QAtablethtm

Row 2, Col 1

Row 2, Col2

Row 2, Col 3

OEBPS/Images/image00439.jpeg
[Pattem Examples x
€ & C fi | patternshtm

OEBPS/Images/image00560.jpeg
<form id='myform' action='form.php' method='get'>
<input type='submit's
</form>

cinput form='myform' type='text' name='field's

OEBPS/Images/image00323.jpeg
<table borde:

1" width='450"' height='200">
<tr align='center's

<td width='25%'>1</td>

<td width='25%'>2</td>

<td width='25%'>3</td>

<td width='25%"'>4</td>
</tr>

<tr align='center's
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>

</tr>

<tr align='center's
<td>9</td>
<td>10</td>
<td colspan='2' bgcolor:
<!-- Cell omitted here -

lightgray'></td>
>

</tr>
</table>

OEBPS/Images/image00444.jpeg
[Font Examples

€ 5 C # Qfontshtm

Hello!

OEBPS/Images/image00324.jpeg
/ 1) Using clspan x

< C fi A tablehtm

OEBPS/Images/image00321.jpeg
<table border='2"' cellpadding='5' cellspacing="'1"
width='250" bgcolor:
<captions

lightgreen' bordercolor='blue’s>

<i> Browser Share Spring 2014</i>

</caption>

<tr>
<th>Browser</th>
<th>Share</th>

</tr>

<tr>
<td>Google Chrome</td>
<td>44%</td>

</tr>

<tr>
<td>Internet Explorer</td>
<td>23%</td>

</tr>

<tr>
<td>Mozilla Firefox</td>
<td>19%</td>

</tr>

<tr>
<td>Apple Safari</tds
<td>9%</td>

</tr>

<tr>
<td>Opera</td>
<td>1%</td>

</tr>

<tr>
<td>Others</td>
<td>4%</td>

</tr>

</table>

OEBPS/Images/image00442.jpeg
canvas = O('example’
S (canvas) .background = '#ddd’

// Enter the examples from this lesson
// so that they replace these comments

// The 0() and S() functions go here,
// or in another script section
L,

OEBPS/Images/image00563.jpeg
Choose a web page: <input type='url' name='site' list='links's>
<datalist id='links's>
<option label='Google' value='http://google.com'>
'Yahoo!' value='http://yahoo.com' >
<option label='Bing' value='http://bing.com' >
<option label='Ask' value='http://ask.com' >
</datalist>

<option label

OEBPS/Images/image00322.jpeg
€ 5 C i QA tablehtm

Browser Share Spring 2014

Browser Share
Google Chrome 44%
Internet Explorer
Mozila Firefox

Opera
Others

OEBPS/Images/image00443.jpeg
context

context .
context .
context .
context .

.font

font
font
font
font

‘3em Helvetica'
'16px Impact'
'150% Courier'
'10mm Times'
172pt Arial'

OEBPS/Images/image00564.jpeg
[) The list Attribute.

€>Cf \t\nstmm

Choose a web page:
http://google.com Googie

hitp://bing.com Bog
http://ask.com Ask

OEBPS/Images/image00565.jpeg
[Min & Max x

< C fi Q minmaxandstpehtm

09: 00 xf3]

OEBPS/Images/image00326.jpeg
<tr align='center's
<td>3</td>
<td>6</td>
<td>9</td>
<1-- Cell omitted here
</tr>
</table>

OEBPS/Images/image00447.jpeg
context.lineWidth >
context .strokeText ('Hello!', 205, 120)

OEBPS/Images/image00568.jpeg
<lnput type='text' name='username'
placeholder='Enter your 6-16 character username's>

OEBPS/Images/image00327.jpeg
/ [Using rowspan x

< C fi 2 table4htm

OEBPS/Images/image00448.jpeg
Font Bxamples x

€« C fi Q fontshtm

Hellol

OEBPS/Images/image00569.jpeg
[} Using placeholders * A

€ > C fi 2 placeholdershtm

nter your 6-16

emame

OEBPS/Images/image00445.jpeg
context.textAlign = 'center'

context .strokeText ('Hello!', 205, 120)

OEBPS/Images/image00566.jpeg
<torm novalidate='novalidate'>
// Various inputs...
<input type='submit's
</form>

OEBPS/Images/image00325.jpeg
<table border='l' width='450"' heighi

<tr align='center's
<td width='25%'>1</td>
<td width='25%"'>4</td>
<td width='25%'>7</td>
<td width='25%'>10</td>

</tr>

<tr align='center's
<td>2</td>
<td>5</td>
<td>8</td>
<td rowspan=

</tr>

2' bgcolor='lightgray’></td>

OEBPS/Images/image00446.jpeg

OEBPS/Images/image00567.jpeg
<form>

// Various inputs...

<input type='submit' formnovalidate='formnovalidate's
</form>

OEBPS/Images/image00352.jpeg
<!--{1rf gt IE 7]>
You are using IE 8 or

<! [endif]

Y

OEBPS/Images/image00473.jpeg
context
context
context
context

context .
context .

context
context

context .

context

context .
Cfil11 ()

context

-beginbPath()
.moveTo (0,

-1lineTo (205,
.lineTo(410,

lineTo (225,
lineTo (410,

-1lineTo (205,
.lineTo (0,

lineTo(185,

.lineTo(0,

closePath ()

170)
105)
170)

85)

OEBPS/Images/image00594.jpeg
<video width='560"' height:
<source src='video.mp4' type='video/mp4' >

'320' controls>

<source src='video.webm' type='video/webm'>

<source src='video.ogv' type='video/ogg' >
<object width='560' height='320' type='application/x-shockwave-flash'
data='flowplayer.swf'>
<param name='movie' value='flowplayer.swf'>
<param name='flashvars' value='config={"clip": {"url":
"http://robinnixon.com/media/video.mpa",
"autoPlay":false, "autoBuffering":true}}'s
</object>
< /video>

OEBPS/Images/image00353.jpeg
<!--[1f gte IE 8]>
You are using IE 8 or

<1 [endif]

i

OEBPS/Images/image00474.jpeg
Filling 2 Path x

€ & C # Qfillpathhtm

OEBPS/Images/image00350.jpeg
(it 1t IE 3]>
You are using IE 5, 6, 7 or 8
<! [endif]

-

OEBPS/Images/image00471.jpeg
context

context .

context

context .
context .
.rect (40, 40, 330

context

context .

context

-beginPath()
context .

moveTo(20, 20
lineTo (390, 20

lineTo(20, 150
lineTo(20, 20

)
)
.lineTo (390, 150)
)
)

closePath()

_stroke ()

90)

OEBPS/Images/image00592.jpeg
‘video width="560"' height='320' controls>
<source src='video.mp4' type='video/mpd'>
<source src='video.webm' type
<source src='video.ogv' type

By e

video/webm'>

video/ogg'>

OEBPS/Images/image00351.jpeg
(ir lcte IE 8]>
You are using IE 5, 6, 7 or 8
<! [endif]

-

OEBPS/Images/image00472.jpeg
[Path Examples x

< € f apathshtm

OEBPS/Images/image00593.jpeg
0:05) commme @

OEBPS/Images/image00354.jpeg
iz 1(IE 6)]>
You are using an Internet Explorer browser, but not IE6
<! [endif]

4

.

OEBPS/Images/image00355.jpeg
address>
1600 Pennsylvania Ave NW
Washington
DC 20500
United States

< /address>

OEBPS/Images/image00476.jpeg
Filling 2 Path x

€ & C # Qfillpathhtm

OEBPS/Images/image00597.jpeg
ection
itemscope itemtype='http://data-vocabulary.org/Person's>

<img itemprop='photo' src='robin.jpg'
all

'Robin Nixon' style='float:left; margin-right:10px's

<h2 itemprop='name'>Robin Nixon</h2>

<p>I am a Book Author, and

online <span itemprop='title'sInstructor</spans.
Some people call me Rob</spans,
and my website is: <a itemprop='url'

href='http://robinnixon.com'>robinnixon.coms.
My address is:</p>

<address

itemscope itemtype='http://data-vocabulary.org/Address'

itemprop='address’'>

123 My Street</spans>,
Anytown,

Anystate</spans>,
AB12 3CD,

Great Britain.

</address>
«/section>

OEBPS/Images/image00356.jpeg
25, 10,225,130'>
20,130, 50,200'>

<area shape='rect' title='Hair'

title='Ear'

shape='rect' title='Ear'

<area shape='circle’ title='Eye'
href='eyes.htm'>

<area shape='circle' title='Eye'

160,145, 15 '

<area shape='rect' title='Nose' 100,150,145,205'>

<area shape='poly' title='Mouth’
95,230,110,220,130,220,150,230,135,240,110,240'>
5 DS

OEBPS/Images/image00477.jpeg
context
context

context .
context .
context .
context.
context.
context .
SEHE0

context

-beginPath()
.moveTo (0,

lineTo(205,
lineTo (410,
lineTo (205,
lineTo(0,
closePath ()
stroke ()

85)

85)
170)
85)

OEBPS/Images/image00598.jpeg
Robin Nixon

T am a Book Author, and
online Instructor. Some
people call me Rob, and
my website s

sobinnixon com. My
address is:

123 My Street, Anytown,
Anystate, AB12 3CD,
Great Britain.

OEBPS/Images/image00595.jpeg
main\Document: X || @ HTMLS Video

OEBPS/Images/image00475.jpeg
context
context
context
context

context .
context .

context
context

.moveTo (0, 85
.lineTo(205, 0
.lineTo(410, 85

-beginPath()

lineTo (205, 170
lineTo(0, 85

.closePath()
_stroke ()

OEBPS/Images/image00596.jpeg
20)

OEBPS/Images/image00359.jpeg
<style>
body {
font-family:Arial;
font-size

color

}

</styles

OEBPS/Images/image00480.jpeg
Filling Path x

€« C f Qfillpathhtm

OEBPS/Images/image00601.jpeg
<p>The highest prime number discovered so far 1is
<output id='result's></output></p>

<scripts>
var worker = new Worker ('worker.js')

worker.onmessage = function(event)

{

document .getElementById ('result') .innerHIML = event.data;

}

SR ABES

OEBPS/Images/image00360.jpeg
<blockquote>
All the world's a stage, And all the men and women merely players:
They have their exits and their entrances; And one man in his time
plays many parts.

< /blockquote>

OEBPS/Images/image00481.jpeg
[Filing 2 Path x

e

C f Qfillpathhtm

OEBPS/Images/image00602.jpeg
var n = 1

search: while (true)

{

OEBPS/Images/image00357.jpeg
[elementshtm x
€ & C fi QA elementshtm

SONAR
Sound Navigation And Ranging
1000 AVe N, i DC 20500, United.

bmal et a dah yraM
Yesterday by the Beatles. Recorded in 1965.

Twas pleased delighted to meet her!

This is example computer output

OEBPS/Images/image00478.jpeg
context

context
context

context .
context .
context .
context .
context .
context .
context .
LFil110)

context

.beginPath()
context .

moveTo (0,

.1lineTo (205,
.lineTo(410,

lineTo(225,
lineTo (410,
lineTo (205,
lineTo(0,

lineTo(185,
lineTo(0,

closePath()

OEBPS/Images/image00599.jpeg
<Script>
if (!!document.getItems)
alert ("Microdata supported")
else alert("Microdata not supported")
</script>

OEBPS/Images/image00358.jpeg
<style>
.mystyle {
font-family:Arial;
font-size

color

}

</styles

OEBPS/Images/image00479.jpeg
Filling Path x

€ & C f A fillpathhtm

OEBPS/Images/image00600.jpeg
<Scripts>
if (!!window.Worker)
alert ("Web workers supported")
else alert ("Web workers not supported")
</scripts>

OEBPS/Images/image00341.jpeg
cecream' >

<select name
<option value='b'>Banana</option>
<option value='c'>Chocolate</option>
<option value='s's>Strawberry</options>
<option value='v' selected='selected'>Vanilla</option>
<option value='w'>Walnut</option>

</select>

OEBPS/Images/image00462.jpeg
[Patter Filled Fonts. x

€ & C fi Q patternedfontshtm

The page says:

Text idth: 410 pirels

OEBPS/Images/image00583.jpeg
<1DOCIIPE HIML>
<html>
<head>
<title>Web Message Listener</titles
</head>
<body>
<div id='output's</div>

<script>
window.onmessage = function(event)
{
document .getElementById('output').innerHTML = event.data
}
</script>
</body>
</html>

OEBPS/Images/image00342.jpeg
<label>
<input type='checkbox' name='agree' value=
I agree to these terms and conditions.
labels.

OEBPS/Images/image00463.jpeg

OEBPS/Images/image00584.jpeg
3 -|o
b Message Sender \

€ & € # [localhost/sendhtm

Message 8

OEBPS/Images/image00339.jpeg
[") Example Form x
€ 5 C A Qfor

Input type: text

H

Input type: password

Inpuc ctype: radio @1
Input type: radio @2

Input type: checkbox @1
Input type: checkbox ©2

Input type: hidden

I
B
Label:

D1 agree

—

OEBPS/Images/image00460.jpeg
/[Patter Filled Fonts x

€ & C fi 2 patternedfontshtm

HTMLD

OEBPS/Images/image00581.jpeg
<!DOCIIPE HIML>
<html>
<head>
<title>Web Message Sender</titles>
</head>
<body>
<iframe id='frame' src='listen.htm' width='360' height='75"'></iframe>

<script>
count = 1

setInterval (function()
{
document . getElementById (' frame') .contentWindow.
postMessage ('Message ' + count++, 'http://localhost')
}, 1000)

OEBPS/Images/image00340.jpeg
<textarea name='summary'></textareas>

<textarea name='summary'sReplace with a summary</textareas

OEBPS/Images/image00461.jpeg
metrics = context.measureText ('HIMLS')
alert ('Text width: ' + metrics.width + ' pixels')

OEBPS/Images/image00582.jpeg
script>
</body>
</html>

OEBPS/Images/image00343.jpeg

OEBPS/Images/image00464.jpeg
) Line Examples x
€ 2 C fi Qlineshtm

OEBPS/Images/image00344.jpeg
<frameset rows='20%, *, 20%'>
<frame src='header.htm'>
body.htm'>

<frame src='footer.htm's>

<frame s

</frameset>
<noframes>

<!-- Alternative content goes here
T ————

OEBPS/Images/image00465.jpeg
context.lineCap
context .lineCap
context .lineCap

'butt’
'round'
1square'

OEBPS/Images/image00586.jpeg

OEBPS/Images/image00345.jpeg
<!-- Some HTML content here -->
<iframe src='anotherpage.htm' width='640' height='300'>
</iframe>

More HTML content here -->

OEBPS/Images/image00466.jpeg
context.linedJoin

'round’
context.lineJoin = 'bevel’
context lineJoin "miter!'

OEBPS/Images/image00587.jpeg
<audio controls>
‘audio.mda’ type='audio/aac'>
<source src='audio.mp3' type='audio/mpeg’>
<source src='audio.ogg' type='audio/ogg'>

<source src

</audio>

OEBPS/Images/image00585.jpeg
window.onmessage = function(event)

if (event.origin == 'http://localhost')
document .getElementById('output') .innerHTML = event.data

OEBPS/Images/image00348.jpeg
(1t IE 6]>
You are using IE 6
<! [endif]

-8 R

-

OEBPS/Images/image00469.jpeg
[Path Examples x

€ & C f& Q pathshtm

OEBPS/Images/image00590.jpeg
@ HTMLS Audio - Mozilla Firefox

File Edit View History Bookmarks Tools Help »

€ crlde

OEBPS/Images/image00349.jpeg
if IE]>
You are using an Internet Explorer browser

<! [endif]-->

OEBPS/Images/image00470.jpeg
context.beginPath()
context.rect (40, 40, 330, 90)
context .closePath ()

context .stroke ()

OEBPS/Images/image00591.jpeg
19)

OEBPS/Images/image00346.jpeg
[Embedding an fframe X \|__
€ & C fi Qiframehtm
Charles Dickens was born in 1812. Having spent the first three years of his ife in Portsmouth, Hampshire,

the family moved to London in 1815. His early years seem to have been idyllic. He spent time outdoors, but
also read voraciously, especiall the icaresque novels of Tobias Smolltt and Henry Fielding.

Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikimedia Shop

Charles John Huffam
Dickens (/tfarlz ‘dikmz/;
7 February 1812 - 9 June
1870) was an English
writer and social critic. He
created some of the
~ Interaction world's most memorable
Help fictional characters and is
About Wikipedia generally regarded as the
Community portal greatest novelist of the
Recent changes Victorian period.['] During
Contact page his life, his works enjoyed
unprecedented fame, and
by the twentieth century

» Printiexnort A G iy

Charles Dickens

» Tools

The Wikipedia entry for Charles Dickens

He spoke, later i life, of his poignant memories of childhood, and of his near-photographic memory of the
people and events, which he used in his writing. His father’s brief period as a clerk in the Navy Pay Office
afforded Charles a few years of private education at William Giles's School, in Chatham

OEBPS/Images/image00467.jpeg
context.beginbPath()
// Path instructions go here
context .closePath ()

OEBPS/Images/image00588.jpeg
C | O filey//main/Documen v | A,

HTMLS Audio

|
|[E®=ERIM

@ HTMLS Audio

(=[] =]

<[> (£ [@fermmec](a

& [N HH Apple Yahoo! Google Maps

Google

] »

»

OEBPS/Images/image00347.jpeg

OEBPS/Images/image00468.jpeg
context
context

context .
.1ineTo (390,

context

context .
.lineTo(20,
.closePath ()

context
context

.beginPath()
.moveTo(20,

lineTo(390,

lineTo(20,

20

150
150
20

OEBPS/Images/image00589.jpeg
<audlo controls>

<source
<source
<source
<object

data:

src='audio.mda'

‘audio/aac'>

src='audio.mp3' type='audio/mpeg'>

src='audio.ogg' type='audio/ogg'>
type="application/x-shockwave-flash"
udioplayer.swE" height="30" width="300">

<param name="FlashVars"

value="mp3=audio.mp3& showstop=1& showvolume=!

</object>

</audio>

OEBPS/Images/image00374.jpeg
Glucose has the formula C₆H₁₂0O₆.

My birthday is May 2<sup>nd</sups.

OEBPS/Images/image00372.jpeg
[) Using <option> x
€ & C fi Q optionhtm

OEBPS/Images/image00493.jpeg
context
context
context

context .

context

-beginbPath()
.moveTo (0,
.lineTo (410,

stroke ()

.closePath ()

85)
85)

OEBPS/Images/image00373.jpeg
<select>
<optgroup label
<option valu

Fruit'>
Apple' >Apple</option>
‘Pear' >Pear</option>
Banana'>Banana</option>

<option valu

<option value=
</optgroup>
<optgroup label='Vegetables'>
Cabbage ' >Cabbage</option>
<option value='Carrot'sCarrot</option>
<option value='Peas'>Peas</option>
</optgroup>
</select>

<option valu

OEBPS/Images/image00494.jpeg
[Quadratic Curves * N
€ = C # Q quadmaticcurveshtm

OEBPS/Images/image00294.jpeg
<p>An island or 1isle 1s any piece of sub-continental land
that is surrounded by water. Very small islands such as
emergent land features on atolls can be called islets, cays
58 Kevasclos

OEBPS/Images/image00293.jpeg
'imagel.png’ width='200"' height='150"
width='200" height='150"
width='200" height='150"

width='200' height='150"

OEBPS/Images/image00292.jpeg
€ 9 C f Qimageshim

OEBPS/Images/image00291.jpeg
<span style="font-family:Palatino, 'Palatino Linotype', serit

This is Palatino, or Palatino Linotype, or serif
if both are unavailable.
SaEERS

OEBPS/Images/image00290.jpeg
[ASelectionof Fonts %

€ > C f A fontfaceshtm

Arial

Arial Black
Avial Namrow

Avant Garde
Bookman
Century Gothic
Copperplate
Comic Sans MS
Courier
Courier New

Garamond
Gill Sans

Lucida Grande
Lucida Console
Palatino

Tahoma

Times

Times New Roman
Trebuchet
Verdana

OEBPS/Images/image00289.jpeg
<tont face="'Lucida Grande',K 'Lucida Sans Unicode', sans-serii">
This is Lucida Grande, or Lucida Sans Unicode, or sans-serif
if both are unavailable.

OEBPS/Images/image00288.jpeg

This is Arial, or sans-serif if unavailable

</fonts>

OEBPS/Images/image00287.jpeg
CorntlowerBlue
Cornsilk
Crimson

Cyan

DarkBlue
DarkCyan
DarkGoldenRod
DarkGray
DarkGreen
DarkKhaki
DarkMagenta
DarkOliveGreen
DarkOrange
DarkOrchid
DarkRed
DarkSalmon
DarkSeaGreen
DarkSlateBlue
DarkSlateGray
DarkTurquoise
DarkViolet
DeepPink
DeepSkyBlue
DimGray
DodgerBlue
FireBrick
FloralWhite
ForestGreen
Fuchsia

Gainsboro

#6495ED
#FFF8DC
#DC143C
#OOFFFF
#00008B
#008B8B
#B8860B
#A9A9A9
#006400
#BDB76B
#8B008B
#556B2F
#FF8C00
#9932CC
#8B0000
#E9967A
#8FBC8F
#483D8B
H2F4F4F
#00CED1
#9400D03
#FF1493
#00BFFF
#696969
#1E9OFF
#B22222
#FFFAFO
#228B22
#FFOOFF
#DCDCDC

LightCoral
LightCyan
LightGoldenRodYellow
LightGray
LightGreen
LightPink
LightSalmon
LightSeaGreen
LightSkyBlue
LightSlateGray
LightSteelBlue
LightYellow

Lime

LimeGreen

Linen

Magenta

Maroon
MediumAquaMarine
MediumBlue
MediumOrchid
MediumPurple
MediumSeaGreen
MediumSlateBlue
MediumSpringGreen
MediumTurquoise
MediumVioletRed
MidnightBlue
MintCream
MistyRose

Moccasin

#F08080
H#EOFFFF
#FAFAD2
#D3D3D3
#90EE90
#FFB6C1
#FFAO7A
#20B2AA
#87CEFA
#778899
#BOC4DE
H#FFFFEQ
#O00FFOO
#32CD32
#FAFOE6
#FFOOFF
#800000
#66CDAA
#0000CD
#BA55D3
#9370DB
#3CB371
#7B6SEE
#OOFA9A
#48D1CC
#C71585
#191970
#FSFFFA
HFFE4EL
HFFE4BS

PowderBlue
Purple

Red
RosyBrown
RoyalBlue
SaddleBrown
Salmon
SandyBrown
SeaGreen
SeaShell
Sienna
Silver
SkyBlue
SlateBlue
SlateGray
Snow
SpringGreen
SteelBlue
Tan

Teal

Thistle
Tomato
Turquoise
Violet
Wheat
White
WhiteSmoke
Yellow
YellowGreen

#BOEOE6
#800080
#FFO000
#BC8F8F
#4169E1
#8B4513
#FA8072
#F4A460
#2E8B57
#FFFSEE
#A0522D
#cococo
#87CEEB
#6A5ACD
#708090
#FFFAFA
#OOFF7F
#4682B4
#D2B48C
#008080
#D8BFD8
#FF6347
#40E0DO
HEES2EE
#F5DEB3
H#FFFFFF
#F5F5F5
#FFFFOO
#9ACD32

OEBPS/Images/image00286.jpeg
Color
AliceBlue
AntiqueWhite
Aqua
Aquamarine
Azure

Beige

Bisque

Black
BlanchedAlmond
Blue
BlueViolet
Brown
BurlyWood
CadetBlue
Chartreuse
Chocolate

Coral

Value
H#FOFSFF
H#FAEBD7
HOOFFFF
HTFFFD4
#FOFFFF
#F5F5DC
HFFE4C4
#000000
H#FFEBCD
#0000FF
#8A2BE2
#A52A2A
#DEB887
#5F9EAO
#7FFFOO
#D2691E
#FF7F50

Color
GhostWhite
Gold
GoldenRod
Gray

Green
GreenYellow
HoneyDew
HotPink
IndianRed
Indigo

Ivory

Khaki
Lavender
LavenderBlush
LawnGreen
LemonChiffon
LightBlue

Value
#F8F8FF
#FFD700
#DAA520
#808080
#008000
#ADFF2F
#FOFFFO
#FF69B4
#CD5C5C
#4B0082
#FFFFFO
#FOE68C
HEGEGFA
#FFFOF5
#7CFCO0
#FFFACD
#ADDSE6

Color
NavajoWhite
Navy

OldLace

Olive
OliveDrab
Orange
OrangeRed
Orchid
PaleGoldenRod
PaleGreen
PaleTurquoise
PaleVioletRed
PapayaWhip
PeachPuff
Peru

Pink

Plum

Value
#FFDEAD
#000080
#FDF5E6
#808000
#6B8E23
#FFA500
#FF4500
#DA70D6
HEEESAA
#98FB98
H#AFEEEE
#DB7093
#FFEFD5
#FFDAB9
#CD853F
#FFCOCB
#DDAODD

OEBPS/Images/image00285.jpeg
<body bgcolor='lightgreen'>

SEGHE SaTor R Wi

OEBPS/Images/image00495.jpeg
context
context
context
context
context

-beginbPath()

.moveTo (0, 85)
.quadraticCurveTo (0,
.stroke ()

.closePath ()

0,

410,

85)

OEBPS/Images/image00377.jpeg
<canvas 1d='canvasl' width="'400' height='300'>
This web page uses the HTMLS canvas element, which is
available on most modern browsers. If you wish to view
this page at its best, please upgrade your browser to
the most recent version.

W Ca——

OEBPS/Images/image00498.jpeg
[Beger Curves x

€ & C i Q beziercurveshtm

(e W

—

OEBPS/Images/image00378.jpeg
<canvas 1d='canvasl' width='400' height='300"'>

This web page uses the HTMLS canvas element, which is
available on most modern browsers. If you wish to view
this page at its best, please upgrade your browser to

OEBPS/Images/image00499.jpeg

OEBPS/Images/image00375.jpeg
[Using <sup> and <sub> x

€ & C fi Asuphtm
Glucose has the formula CgH;,05.
My birthday is May 2°¢.

OEBPS/Images/image00496.jpeg
[Quadratic Curves

€ & C fi 2 quadmaticcurveshtm

e

OEBPS/Images/image00376.jpeg

OEBPS/Images/image00497.jpeg
context
context
context
context

-beginbPath{)
.moveTo (0, 85)
.bezierCurveTo (0
.stroke ()
context::

closePath ()

0,

410,

170,

410,

85)

OEBPS/Images/image00381.jpeg
context.arc(e0, 60, 50, 0, Math.PI * 2, false)
context .stroke ()

context.font = '70px Times'
context.fillText ('Hi!', 300, 280, 100)

OEBPS/Images/image00502.jpeg
context.drawlmage (1image, 152, 10, 62, 70)
context .drawImage (image, 152, 90, 62, 70)

OEBPS/Images/image00382.jpeg
Canvas Example x

€« Ccfn file://storcenter/Writing/Fact/Books/Other%20P

OEBPS/Images/image00503.jpeg
[Using Images x
€ 5 C i Qimageshtm

5|
5|

OEBPS/Images/image00379.jpeg
the most recent version.
</canvas>

<script>
canvas = document.getElementById('canvasl')
canvas.style.background = '#ddd’
context = canvas.getContext ('2d')
context.fillRect (150, 100, 100, 100)

e HERTDES

OEBPS/Images/image00500.jpeg
new Image()
image.src = 'htmlS.png'

image.onload = function()

context .drawImage (image, 10, 10)

OEBPS/Images/image00380.jpeg
Canvas Example x

= C fi Q canvashtm

OEBPS/Images/image00501.jpeg
[Using Images x
€ 5 C i Qimageshtm

OEBPS/Images/image00363.jpeg
<p>Here 1s some JavaScript program code:</p>

<code>
var n = 1

search: while (true)

for (var i
if (n % i
postMessage (n) ;

i <= Math.sqrt(n); i += 1)

0) continue search;

«/code>

OEBPS/Images/image00484.jpeg
[} Drawing Curves x

«

C fi 2 curvesihtm

oo (C@

OEBPS/Images/image00364.jpeg
[Using <code> and <pre> x

€ 5 C fi[%prehtm

Here is some JavaScript program code in a <code> element

var n = 1 search: while (true) { n += 1 for (var i =
2; 1 <= Math.sqro(n): i += 1) if (0 % 1 == 0)
continue search; postMessage(n): }

Here is some JavaScript program code in a <pre> clement:
varn =1
search: while (true)
s
for (var i = 2; i <= Math.sqgrt(n); i += 1)

(n % i ==0) continue search;
postiessage (n) ;

OEBPS/Images/image00361.jpeg
[Qutes x

€ 2> C fi QA quoteshtm

Allthe world's a stage, And all
the men and women merely
players: They have their exits
and their entrances; And one
man in his time plays many
parts
Dr. Seuss said, Don't cry because if's over,
smile because it happened "

OEBPS/Images/image00482.jpeg
1t (1sPointInPath(100, 123))

// Do something here

OEBPS/Images/image00603.jpeg
for (var i = 2; i <= Math.sqrt(n); i += 1
if (n % i == 0) continue search;

postMessage (n)

OEBPS/Images/image00362.jpeg
.center {
display :block;
margin :auto;
text-align:center;

OEBPS/Images/image00483.jpeg
context
context

context .

context

context
context
context
context

context
context

context .
context .
context .

context
context

context .
context .
Cfi110)

context

-beginPath()
.moveTo (55, 85)

arc(s5, 85, 45,

.closePath()
context .

stroke ()

.beginPath ()
.moveTo (155, 85)
.arc(155, 85, 45,
.closePath()
context.

stroke ()

.beginPath ()
.moveTo (255, 85)

arc(255, 85, 45,
closePath()
stroke ()

.beginPath ()
.moveTo (355, 85)

arc(355, 85, 45,
closePath ()

o,

o,

o,

Math.PI / 2)

Math.PI)

Math.PI / 2 * 3)

Math.PI * 2)

OEBPS/Images/image00604.jpeg
CACHE MANIFRST
clock.htm
clock.css

clock.qs

OEBPS/Images/image00284.jpeg

This is red, size 5 text, in the Arial font

OEBPS/Images/image00283.jpeg

OEBPS/Images/image00282.jpeg
/ [) €55 Text Emphasis 5

- CfH e\temmphascsusmgcsshtm

This s italic.
This s strikethrough.

OEBPS/Images/image00281.jpeg
<head>
<title> CSS Text Emphasis</title>
<style>
.italic { font-style :italic; }
.strike { text-decoration:line-through; }
</styles
</head>
<body>
This is <span clas
This is <span clas
</body>

'italic'>italic.

strike'>strikethrough.

OEBPS/Images/image00280.jpeg
italic.
<span style='text-decoration:line-through;'sstrike through</spans.

OEBPS/Images/image00279.jpeg
[Text Emphasis Tags x

€ & C fi Q textemphasishtm

‘This uses <bold>
‘This uses <big>
‘This uses
<center>
‘This uses <det>
This uses
‘This uses <i>

OEBPS/Images/image00278.jpeg
<br clear='left'>
<br clear='right's
A HlEE e PRLLYS

OEBPS/Images/image00277.jpeg
Ask, and it shall be given you;

seek, and you shall find;

knock, and it shall be opened unto you:
For every one that asks receives;

and he that seeks finds;

and to him that knocks it shall be opened.

OEBPS/Images/image00276.jpeg
<p>Ask, and it shall be given you;

seek, and you shall find;

knock, and it shall be opened unto you:<brs
For every one that asks receives;

and he that seeks finds;

and to him that knocks it shall be opened.</p>

OEBPS/Images/image00275.jpeg
Ask, and it shall be given you; seek, and you shall nock,

B

and it shall be opened unto you: For every one that asks
receives; and he that seeks finds; and to him that knocks it
shall be opened.

OEBPS/Images/image00605.jpeg
<!DOCTYPE html>
<html manifest='clock.appcache’>
<head>
<title>Offline Web Apps</title>
<script src='clock.js'></script>
<link rel='stylesheet' href='clock.css'>
</head>
<body>
<p>The time is: <output id='clock'></output></p>
</body>
</html>

OEBPS/Images/image00366.jpeg
0T
€ > C fi Qtableshtm

Weight Loss
Month Weight
Jamary 180 pounds

OEBPS/Images/image00487.jpeg
[Drawing Curves *

2 C A A curves3htm

m

CV“ ~O

OEBPS/Images/image00608.jpeg
<!DOCTYPE HTML>

<html>
<head>
<title>Drag and Drop</title>
<style>
#dest {
background: lightblue;
border :lpx solid #444;
width :320px;
height :100px;
padding :10px;
}
</style>
</head>
<body>

<div id='dest' ondrop='drop(event)'
ondragover='allow (event) '></div>

Drag the image below into the above element<brs<brs

OEBPS/Images/image00367.jpeg
<torm>
<fieldset>
<legend>Your Name</legend>
Forename: <input type='text' name='fname'>
Surname: <input type='text' name='sname'>
</fieldset>

Email: <input type='text' name='email's
<input type='submit's>
</form>

OEBPS/Images/image00488.jpeg
context.beginPath()
context .moveTo (0, 170)

OEBPS/Images/image00609.jpeg
<img 1d='source' src='ball.gif' draggable='true
ondragstart="'drag (event) '>

<script>
function allow(event)

event .preventDefault ()

function drag(event)

event .dataTransfer.setData('image/png', event.target.id)

function drop (event)

i
event .preventDefault ()
var data=event.dataTransfer.getData('image/png')
event .target .appendChild (document .getElementById (data))

}

</scripts>
</body>
</html>

OEBPS/Images/image00485.jpeg
context
context
context
context

context
context
context

context .

context

context .
context .
.closePath ()

context

context

context .
context .
.closePath()

context

-beginPath{)
.arc(ss, 85,
.stroke ()
.closePath()

.beginPath ()
.arc(155, 85,
.stroke ()

closePath ()

.beginPath ()

arc (255, 85,
stroke ()

.beginPath ()

arc(3ss5, 85,
stroke ()

45,

°

°

°

Math.PI / 2)

Math.PI)

Math.PI / 2 * 3)

Math.PI * 2)

OEBPS/Images/image00606.jpeg
output { font-weight:bold; }
And this is clock.js:
setInterval (function ()

{

document .getElementById('clock') .innerHTML = new Date ()

}, 1000)

OEBPS/Images/image00365.jpeg
<table>
<caption><i>Weight Loss</i></caption>
<colgroup>
<col style="background-color:#eee; ">
<col style="background-color:#ddd; ">
</colgroup>
<tr>
<th>Month</th>
<th>Weight</th>
</tr>
<tr>
<td>January</td>
<td>180 pounds</td>
</tr>
</table>

OEBPS/Images/image00486.jpeg
[} Drawing Curves x
€ & C fi Qcurves2htm

2O

OEBPS/Images/image00607.jpeg
/[Offine Web Apps x

e C f A clockhtm =

The time is: Tue Feb 11 2014 18:02:50 GMT+0000
| (GMT Standard Time)

OEBPS/Images/image00370.jpeg
<hr>
<hr width='75%'>
e width=1'1060"s

OEBPS/Images/image00491.jpeg
context
context

context .
context .

context

-beginPath()
.moveTo (0, 170)

arcTo(0, 0,
stroke ()

.closePath()

170,

0,

170)

OEBPS/Images/image00371.jpeg
<select>

<option value='Apple'>Apple</option>
<option value='Pear'>Pear</option>
<option value='Banana'>Banana</option>

</select>

OEBPS/Images/image00492.jpeg
[} Drawing Curves x

€ > C fi QA curvesdhtm

OEBPS/Images/image00368.jpeg
[Fieldset

€ 2 C fi A fieldsethtm

Your
’-Fomume: [| Surame: |

Buab| | [sumt]

OEBPS/Images/image00489.jpeg
context
context

context

context .

context

-beginbPath()
.moveTo (0, 170)
context .

lineTo(0, 0)
-lineTo(170, 0)
stroke ()

.closePath ()

OEBPS/Images/image00610.jpeg
)/ [brag and Drop x \ =12l

€ > C A Q draganddrophtm

, =
09
/

-

Drag the image below into the above clement

OEBPS/Images/image00369.jpeg
<style>
.offer {
font-family:'Times New Roman';
font-size :ldpt;
color :green;
}

</styles

OEBPS/Images/image00490.jpeg
[) Drawing Curves x

€ 5 C i A curvesdhtm

OEBPS/Images/image00611.jpeg
“UA)

(-2

OEBPS/Images/image00394.jpeg
<lmg src='dad.jpg’ imagel'>
<script>
document .getElementById('imagel') .src = 'mom.jpg’

</scripts

OEBPS/Images/image00314.jpeg
<table border='l' bgcolo:
cellpadding='5' cellspacing='5'>
<t-- Table contents -->

</table>

450" height='200"

OEBPS/Images/image00313.jpeg
alhL

Acronym for Hyper Text Markup Language
css

Acronym for Cascading Style Sheets
JavaScript

An in-browser programming language

OEBPS/Images/image00312.jpeg
<dl>
<dt>HTML</dt>
<dd>Acronym for Hyper Text Markup Language</dd>
<dt>CSS</dt>
<dd>Acronym for Cascading Style Sheets</dd>
<dt>Javascript</dt>
<dd>An in-browser programming language</dd>
elals

OEBPS/Images/image00311.jpeg
1 start='5

Apple

Pear

<1i>Banana</1i>

<1i>Plume/li>

Orange</1i>

OEBPS/Images/image00310.jpeg
I'>
Apple
Pear</lis>

Banana</1i>

Plume/li>

Orange</1i>

OEBPS/Images/image00309.jpeg
square'>
Apple
Pear
Banana
Plum</1i>
Orange</1i>
</uls>

OEBPS/Images/image00308.jpeg
Banana</1li>

Plume

Orange</1i>

OEBPS/Images/image00307.jpeg

Apple
<uls
Bramley
Cox</1i>
Golden Delicious</lis

</1i>
Pear</lis

OEBPS/Images/image00306.jpeg

Apple
Pear
Banana</1i>
Plume</1li>
Orange</1i>
it

OEBPS/Images/image00395.jpeg
<input name='name’ ext' Jane' 1d='name'>
<script>
document .getElementById('name') .value = 'mike’

I BEREES.

OEBPS/Images/image00305.jpeg

Apple
Pear
Banana</1i>
Plume</1li>
Orange</1i>
Ny T -

OEBPS/Images/image00396.jpeg
A 2nd example document X

C fi Q javascript2htm

Submit

OEBPS/Images/image00399.jpeg
<lmg src='dad.jpg' 1d='lmagel'>

<script>
O('imagel') .style.width = '150px' // More to type

OEBPS/Images/image00400.jpeg
S('imagel') .height = '120px' // Less to type
function O(obj)

if (typeof obj

tobject') return obj
else return document.getElementById (obj)

function S(obj)
{

return O(obj) .style
}

e/ soripts

OEBPS/Images/image00397.jpeg
<Script>
O('name') .value = 'mike’

function O(obj)
{
if (typeof obj
else return document.getElementById (obj)

‘object') return obj

}

S eABES

OEBPS/Images/image00398.jpeg
newobject.value ='mike'
// A few lines of code go here
newobject .value ='fred'

OEBPS/Images/image00403.jpeg
<script>

myimage = O('image1")
S (myimage) .width "150px"
S (myimage) .height = '120px'

</scripts

OEBPS/Images/image00404.jpeg
<canvas 1d='canvasl' width='400' height='300">
This web page uses the HIMLS canvas element, which is
available on most modern browsers. If you wish to view
this page at its best, please upgrade your browser to
the most recent version.

</canvas>

cscript>
canvas = O('canvasl')
S (canvas) .background '#dda
context = canvas.getContext ('2d')
context.fillRect (150, 100, 100, 100)

function 0(obj)

{
if (typeof obj == 'object') return obj
else return document.getElementById (obj)

OEBPS/Images/image00401.jpeg
[) A2nd example document x ___

€ 2 C A Qjavascriptzhtm

Vi

!
mike Submit

OEBPS/Images/image00402.jpeg
<Script>
S('imagel') .width = '150px'
S('imagel') .height = '120px
</gcriots

OEBPS/Images/image00383.jpeg
Bl Geolocstion Example x

& C i [localhost/
This example will ask your browser for its location ifit supports this feature.

Permission Granted

Google

OEBPS/Images/image00504.jpeg
[%) Using Images x
€ 5 C fi Aimageshtm

5ES

OEBPS/Images/image00384.jpeg
B Mt video - Google Sea x

€ & C # [htpsy//www.google.com Press [T | to search Google| =

Google

himi5 video)

Bmi5 Remove
himi5 boilerplate |
himi5 video m Fesling Lucky »
himi5 doctype

~ABGUTZ 540,000 000 TSSO (038 SEEonas)

Ad related to html5 video ®

‘www.brightcove. com/Free_Tria
Free 30 Day Trall

Brightcove has 376 followers on Google+

HTML Video - Mobile Device Compatible - YouTube Sync - Video Analytics

HTMLS Video - W3Schools
‘Wi w3schools com/htmi/htmis._ vmo

e T, e AN S SR G S . s
HIMLS,videos caud only be playsd i plugin Am flash). However .

OEBPS/Images/image00304.jpeg
[) TheEight List Types X

€ & C f Qlistshtm T =
1 Apple A Apple a Apple I Apple i Apple
2. Pear B.Pear b Pear IL Pear i Pear
3 Banma C. Banana c. Banana IIL Banana i Banana
4. Phm D. Pm d Phm IV. Plum iv. Phm
5. Orange E. Orange ¢ Orange V. Orange v. Orange
o Apple = Apple © Apple
v . o Pex o Acronym for Hyper Text Markup Language
* Banana = Banama © Banana ;
I e I — A‘ctonymfmCusudmgStyleSheas
« Orange = Orange © Orange g

Anin-browser programming language

OEBPS/Images/image00303.jpeg

OEBPS/Images/image00302.jpeg
[1) Aligning Images x

€ & C fi Q aligningimageshtm =

Anisland or isle is any piece of
sub-continental land that is
surrounded by water. Very small
islands such as emergent land
features on atolls can be called
islets, cays or keys

Anisland in a river or lake may be called an eyot or holm. A grouping
of geographically or geologicaly related islands is called an
archipelago.

OEBPS/Images/image00301.jpeg
<p>An 1sland 1n a river or lake may be called an eyot or
holm. A grouping of geographically or geologically related
islands is called an archipelago.</p>

OEBPS/Images/image00300.jpeg
<p>An 1sland or 1isle 1s any piece of sub-continental land
that is surrounded by water. Very small islands such as
emergent land features on atolls can be called islets, cays
or keys.<br clear='left's</p>

OEBPS/Images/image00299.jpeg
/[Aligning Images x L1

& & G fi a aligningimageshtm =

island or isle is any piece of sub-
ontinental land that is surrounded by
water. Very smallislands such as
ergent land features on atolls can
e called islets, cays or keys.

|

Anisland in a river or lake may be called an eyot or holm. A grouping
ically or geologicall islands is called an

of
archipelago.

OEBPS/Images/image00298.jpeg
<p>An 1sland 1in a river or lake may be called an eyot or
holm. A grouping of geographically or geologically related
islands is called an archipelago.</p>

OEBPS/Images/image00297.jpeg
<p>An 1sland or 1isle 1s any piece of sub-continental land
that is surrounded by water. Very small islands such as
emergent land features on atolls can be called islets, cays
or keys. <br clear='left's</p>

OEBPS/Images/image00296.jpeg
/[Aligning Images
G fi 2 aligningimages.ntm

island or isle is any piece of sub-
ontinental land that is surrounded by
ater. Very smallislands such as
ergent land features on atolls can
< called islets, cays or keys.
- island in a river or lake may be
alled an eyot or holm. A grouping
of geographically or geologically related islands is called an
archipelago

OEBPS/Images/image00295.jpeg
<p>An 1island 1in a river or lake may be called an eyot or
holm. A grouping of geographically or geologically related
islands is called an archipelago.</p>

OEBPS/Images/image00505.jpeg
[*) Using Images x
€ 5 C fi Qimageshtm

SEOl

OEBPS/Images/image00385.jpeg
<object widt]

<param name= http://www.youtube . com/v/sNAJUL1EELI ">
"allowFullScreen" value="true">
"allowscriptaccess" value="always"s
<embed src=http://www.youtube.com/v/sNAJUL1EELT
type="application/x-shockwave-£lash"
allowscriptaccess="always" allowfullscreen="true"
width="480" height="385">
< /obiacts

<param name

<param name:

OEBPS/Images/image00506.jpeg
1magel = new Image
image2 = new Image
image3 = new Image
image4 = new Image

imagel.src = 'html5.png'
image2.src = 'smiley-50.png’
image3.src = 'mom.jpg’

image4.src = 'dad.jpg’

imagel.onload = function() // HTMLS logo
{
context .shadowOffsetX = 8
context .shadowOffsetY = 8
context . shadowBlur =38
context.shadowColor = '#000'
context.drawImage (imagel, 10, 10)

image2.onload = function() // Smiley image
{
context . shadowOffsetX = 6
context . shadowOffsetY = 6
context.shadowBlur = 6
context.shadowColor = '#333'
context .drawImage (image2, 152, 10)

image3.onload = function() // Mom image

{

context .shadowOffsetX =

4
context.shadowOffsetY = 4
context . shadowBlur =4

context.shadowColor = '#666'
context .drawImage (image3, 212, 10, 90, 73)

OEBPS/Images/image00388.jpeg
<html>
<head>
<title>Example</title>
<meta name='robots' content='index, follow's
</head>
<body>
Visit Yahoo!
<form id='login' method='post' action='form.php'>
name' type='text' valu

Jane's

OEBPS/Images/image00509.jpeg
new Image()

image.src = 'boat.png’

image.onload function ()

OEBPS/Images/image00389.jpeg
<input types='subml
</form>

</body>
</htmls>

OEBPS/Images/image00510.jpeg
context .drawImage (image, 0, 0)
imagedata = context.getImageData(0, 0, 205, 170)

OEBPS/Images/image00386.jpeg

OEBPS/Images/image00507.jpeg
image4.onload = function() // Dad image

{
context . shadowOffsetX = 2
context . shadowOffsetY = 2
context.shadowBlur = 2
context.shadowColor = '#999'
context.drawImage (imaged, 312, 10, 90, 73)

context .shadowOffsetX = 3 // "Hello" text
context .shadowOffsetY = 3
&

context . shadowBlur =

context .shadowColor = '#444'
context . font = '38pt Arial'
context.fillStyle = 'blue’

context .fillText ('Hello', 152, 135)

context .shadowOffsetX = 0
context .shadowOffsetY = 0
context . shadowBlur =6

// Outlined rectangle

context . shadowColor

context .strokeStyle
context .lineWidth =3
context .strokeRect (280, 95, 120, 65)

OEBPS/Images/image00387.jpeg

OEBPS/Images/image00508.jpeg
") Adding Shadows x|

= C A shadowshtm

OEBPS/Images/image00392.jpeg
<Script>
document .title = 'This is an example web page'
</script>

OEBPS/Images/image00513.jpeg
imagedata
inagedata
imagedata
imagedata

-dataf[4]
.data[5]
.data(6]
.data(7]

17
/1
1/
//

The
The
The
The

red portion of:
green portion of:
blue portion of:
alpha portion of:

OEBPS/Images/image00393.jpeg
<script>
document . forms. login.method = 'get
S EERIRES

OEBPS/Images/image00514.jpeg
imagedata.data(816] // The red portion of: 204,0
imagedata.data[817] // The green portion of: 204,0
imagedata.data(818] // The blue portion of: 204,0
imagedata.data[819] // The alpha portion of: 204, 0

OEBPS/Images/image00390.jpeg
<html>

<head>

<title>
1: le| i i "httpi/lyahoo.com’
>

|
action="from.php'| | [VisitYahoo!
>

</title>

<input

<head>

<img

sre="dad.jpg’
>

ut
type='submit’
>

</form>

</body>

<html>

OEBPS/Images/image00511.jpeg
[Direct Pixel Accessing X

€« C fi Q imagedatahtm

OEBPS/Images/image00391.jpeg
ipt Bxemple \
« C f Q javascriptlhtm

Visit Yahoo!
Jiane Submit

OEBPS/Images/image00512.jpeg
imagedata
imagedata
imagedata
imagedata

.data(0] // The
.datall] // The
.data([2] // The
.data[3] // The

red portion of:
green portion of:
blue portion of:
alpha portion of:

OEBPS/Images/image00254.jpeg

OEBPS/Images/image00253.jpeg

OEBPS/Images/image00252.jpeg

OEBPS/Images/image00251.jpeg
20 Lessons to Successful Web Development

2
s

Robin Nixon

New York Chicago _San Francisco
Athens London Madrid Mexico ity
Milan New Delhi Singapore ~Sydney Toronto

OEBPS/Text/nav.xhtml

 Guide

 		Title Page

 		Contents

 		Cover

 Table of contents

 		Title Page

 		Copyright Page

 		Dedication

 		Contents at a Glance

 		Contents

 		Acknowledgments

 		Introduction

 		PART I Basic HTML

 		LESSON 1 An Introduction to HTML

 		What Is HTML?

 		HTTP and HTML Basics

 		The Request/Response Sequence

 		The Difference Between Get and Post Requests

 		HTML Tags

 		Tag Attributes

 		Summary

 		Self-Test Questions

 		LESSON 2 The Layout of an HTML Document

 		The <!DOCTYPE> Declaration

 		Internet Explorer Tweak for Local Documents

 		The <html> Tag

 		The <head> Tag

 		Creating a Document Title

 		Including Style Sheets

 		Incorporating JavaScript

 		Passing Metadata

 		The <body> Tag

 		Summary

 		Self-Test Questions

 		LESSON 3 The HTML Document Body

 		Inserting Comments

 		The HTML 4.01 Tags

 		The <div> and Tags

 		Headings

 		Paragraphs

 		Line Breaks

 		Text Emphasis

 		Summary

 		Self-Test Questions

 		LESSON 4 Fonts, Colors, and Images

 		Changing Font Face and Color

 		 …

 		 …

 		 …

 		<basefont>

 		<body bgcolor=′…′>

 		The Named Colors

 		Coloring by Numbers

 		Font Faces

 		Displaying Images

 		Summary

 		Self-Test Questions

 		LESSON 5 Creating Lists and Tables

 		Building Lists

 		Overriding the Defaults

 		Definition Lists

 		Creating Tables

 		Table Rows and Columns

 		Extending Rows and Columns

 		Summary

 		Self-Test Questions

 		LESSON 6 Links, Forms, and Frames

 		Using Hyperlinks

 		The Query String

 		Relative URLs

 		Creating Links

 		Building Forms

 		The <input> Tag

 		The <textarea> Tag

 		The <select> Tag

 		The <button> Tag

 		The <label> Tag

 		Frames and Iframes

 		Summary

 		Self-Test Questions

 		LESSON 7 Using the Remaining HTML4 Tags

 		Conditional HTML for Internet Explorer

 		Simple Comparisons

 		Higher or Lower Values

 		The Not Operator

 		The Mark of the Web

 		<abbr> … </abbr>

 		<acronym> … </acronym> (Obsolete)

 		<address> … </address>

 		<applet> … </applet> (Obsolete)

 		<area>

 		<base>

 		<basefont> (Obsolete)

 		<bdo> … </bdo>

 		<big> … </big> (Obsolete) and <small> … </small>

 		<blockquote> … </blockquote>

 		<center> … </center> (Obsolete)

 		<cite> … </cite>

 		<code> … </code>

 		<col> and <colgroup>

 		 …

 		<fieldset> … </fieldset>

 		 … (Obsolete)

 		<frameset> (Obsolete)

 		<hr>

 		<iframe> … </iframe>

 		<isindex> … </isindex> (Obsolete)

 		<menu> … </menu> (Reserved)

 		<optgroup> … </optgroup>

 		_… and […]

 		Summary

 		Self-Test Questions

 		PART II HTML5 and the Canvas

 		LESSON 8 What’s New in HTML5

 		The Canvas

 		Geolocation

 		Forms

 		Local Storage

 		Audio and Video

 		The <embed> Tag

 		Microdata

 		Web Workers

 		Web Applications

 		Still to Come

 		Summary

 		Self-Test Questions

 		LESSON 9 Accessing the Canvas

 		An Ultra-Crash Course in JavaScript

 		Accessing Form Elements from JavaScript

 		Using the getElementById() Function

 		The Simpler O() Function

 		The Partner S() Function

 		The <canvas> Tag

 		Accessing the Canvas with JavaScript

 		Converting a Canvas to an Image

 		Summary

 		Self-Test Questions

 		LESSON 10 Creating Rectangles, Fills, Gradients, and Patterns

 		Drawing Rectangles

 		The fillRect() Function

 		The fillStyle Property

 		The clearRect() Function

 		The strokeRect() Function

 		Creating Gradients

 		The createLinearGradient() Function

 		The createRadialGradient() Function

 		The addColorStop() Function

 		Using Patterns

 		The createPattern() Function

 		Summary

 		Self-Test Questions

 		LESSON 11 Writing Text to the Canvas

 		Writing Text

 		The font Property

 		The strokeText() Function

 		The textAlign Property

 		The textBaseline Property

 		The fillText() Function

 		Determining Text Width

 		Summary

 		Self-Test Questions

 		LESSON 12 Drawing Lines, Paths, and Curves

 		Drawing Lines

 		The lineWidth Property

 		The lineCap Property

 		The lineJoin Property

 		The miterLimit Property

 		Drawing with Paths

 		The beginPath() and closePath() Functions

 		The moveTo() and lineTo() Functions

 		The stroke() Function

 		The rect() Function

 		The fill() Function

 		The clip() Function

 		The isPointInPath() Function

 		Creating Curves

 		The arc() Function

 		The arcTo() Function

 		The quadraticCurveTo() Function

 		The bezierCurveTo() Function

 		Summary

 		Self-Test Questions

 		LESSON 13 Manipulating Images, Shadows, and Pixels

 		Using Images

 		The drawImage() Function

 		Adding Shadows

 		Pixel Editing

 		The getImageData() Function

 		The data[] Array

 		The putImageData() Function

 		The createImageData() Function

 		Summary

 		Self-Test Questions

 		LESSON 14 Compositing, Transparency, and Transformations

 		Compositing and Transparency

 		The globalCompositeOperation Property

 		The globalAlpha Property

 		Using Transformations

 		The scale() Function

 		The save() and restore() Functions

 		The rotate() Function

 		The translate() Function

 		The transform() Function

 		The setTransform() Function

 		Summary

 		Self-Test Questions

 		PART III Advanced HTML

 		LESSON 15 Supporting Geolocation

 		Accessing Geolocation with JavaScript

 		The geolocation Property

 		The getCurrentPosition() Function

 		In the Real World

 		The GPS Service

 		Other Location Methods

 		Summary

 		Self-Test Questions

 		LESSON 16 Building Advanced Forms

 		New Form Attributes

 		The autocomplete Attribute

 		The autofocus Attribute

 		The form Attribute

 		Form Overrides

 		The formaction Attribute

 		The formenctype Attribute

 		The formmethod Attribute

 		The formnovalidate Attribute

 		The formtarget Attribute

 		The height and width Attributes

 		The list Attribute and <datalist> and <option> Tags

 		The min and max Attributes

 		The multiple Attribute

 		The novalidate and formnovalidate Attributes

 		The pattern Attribute

 		The placeholder Attribute

 		The required Attribute

 		The step Attribute

 		New Form Input Types

 		The color Input Type

 		Date and Time Pickers

 		The date Input Type

 		The month Input Type

 		The time Input Type

 		The week Input Type

 		The datetime Input Type

 		The datetime-local Input Type

 		The email Input Type

 		The number Input Type

 		The range Input Type

 		The search Input Type

 		The tel Input Type

 		The url Input Type

 		Summary

 		Self-Test Questions

 		LESSON 17 Implementing Local Storage and Cross-Document Messaging

 		Using Local Storage

 		Storing and Retrieving Local Data

 		Removing and Clearing Local Data

 		Cross-Document Messaging

 		Summary

 		Self-Test Questions

 		LESSON 18 Playing Audio

 		Understanding Codecs

 		The <audio> and <source> Tags

 		The <audio> and <source> Tag Attributes

 		Supporting Older Browsers

 		Summary

 		Self-Test Questions

 		LESSON 19 Displaying Video

 		The Video Codecs

 		The <video> and <source> Tags

 		The <video> and <source> Tag Attributes

 		Summary

 		Self-Test Questions

 		LESSON 20 Working with Microdata, Web Workers, and Web Applications

 		Microdata

 		Web Workers

 		Offline Web Applications

 		Drag and Drop

 		Other HTML5 Tags

 		Summary

 		Self-Test Questions

 		APPENDIX Answers to the Self-Test Questions

 		Lesson 1 Answers

 		Lesson 2 Answers

 		Lesson 3 Answers

 		Lesson 4 Answers

 		Lesson 5 Answers

 		Lesson 6 Answers

 		Lesson 7 Answers

 		Lesson 8 Answers

 		Lesson 9 Answers

 		Lesson 10 Answers

 		Lesson 11 Answers

 		Lesson 12 Answers

 		Lesson 13 Answers

 		Lesson 14 Answers

 		Lesson 15 Answers

 		Lesson 16 Answers

 		Lesson 17 Answers

 		Lesson 18 Answers

 		Lesson 19 Answers

 		Lesson 20 Answers

 		Index

OEBPS/Images/image00406.jpeg
Canvas Bxample x

= C fi A canvaslhtm

OEBPS/Images/image00407.jpeg
<script>
canvas
S (canvas) .background
context

O('canvasl')
'#ddd’
canvas.getContext ('2d'

3

OEBPS/Images/image00405.jpeg
function S(obj)

return O(obj) .style

}

</script>

OEBPS/Images/image00410.jpeg
Canvas Example 2 x

& C fi A canvas2htm

OEBPS/Images/image00411.jpeg
canvas.toDataURL ()
O('image') .s¥e = canvas.toDatalURL('image/ong")

O('image') .src

OEBPS/Images/image00408.jpeg
context.tillRect (150, 100, 100, 100)

function 0(obj)
!

if (typeof obj

'object') return obj
else return document.getElementById (obj)

function S(obj)
{

return O(obj) .style
}

</scripts>

OEBPS/Images/image00409.jpeg
'canvasl' width='400' height='300'></canvas>

<canvas 1
cimg id='image's

<script>
canvas = O('canvasl')
S (canvas) .background = '#ddd'
context. = canvas.getContext ('2d')
context.fillRect (150, 100, 100, 100)

O('image') .src = canvas.toDataURL()
e AE

OEBPS/Images/image00414.jpeg
<canvas id='example' width='410' height='170'></canvas>

<script>

canvas = O('example')
S(canvas) .background = '#ddd'

context.fillRect (20, 30, 50, 70)

// The 0() and S() functions must be somewhere in the document
RS

OEBPS/Images/image00412.jpeg
O('image') .src = canvas.toDataURL('image/jpeg', 0)
O('image') .src = canvas.toDataURL('image/jpeg', 0.5)

O('image').src = canvas.toDataURL('image/ipeg', 1)

OEBPS/Images/image00413.jpeg
10)

OEBPS/Images/image00274.jpeg
<p>Ask, and 1t shall be given you; seek, and you
shall find; knock, and it shall be opened unto you:
For every one that asks receives; and he that seeks
finds; and to him that knocks it shall be opened.</p>

OEBPS/Images/image00273.jpeg
[} The Six HTML Headings X
& & G # Q headingshtm

This is a level 1 heading

This is a level 2 heading
This is a level 3 heading

This is a level 4 heading

This is a level 5 heading

This is a level 6 heading

OEBPS/Images/image00272.jpeg
1>This
<h2>This
<h3>This
<h4>This
<h5>This
<h6>This

is
is
is
is
is
is

v e e e

level
level
level
level
level

H
A v s w N e

heading</hl>
heading</h2>
heading</h3>
heading</h4>
heading</hs>
heading</hé>

OEBPS/Images/image00271.jpeg
<div>This is some text in a div element</div>
This is some text in a span element</spans

OEBPS/Images/image00270.jpeg
-
Created by Joe Brown on July 27th 2014.
Updated Sept 15 2015 by JB: Improved Ad display.
Updated Jan 12 2016 by PB: Updated login script.

OEBPS/Images/image00269.jpeg

OEBPS/Images/image00268.jpeg
<!DOCTYPE html>
<html>
<head>
<title>The Web Page's Title</titles
</head>
<body>
This is the body of the document.
</body>
</html>

OEBPS/Images/image00267.jpeg
<body>
This is the body of the document.
S BEAYS

OEBPS/Images/image00266.jpeg
<meta name='keywords' content='keywordl,keywordz,keyword3,etc'>

description' content='Description of web page's

<meta name

OEBPS/Images/image00265.jpeg
<head>
<title>The Best Website Ever</title>
<meta http-equiv='refresh' content='10; url=http://othersite.com'>
<meta name='viewport' content='width=960'>

</head>

OEBPS/Images/image00264.jpeg
A Thisis a JavaSeript pop-up alert

OEBPS/Images/image00263.jpeg
<SCcript>
alert('This is a JavaScript pop-up alert')
S EePRES

OEBPS/Images/image00262.jpeg
<style>
hl { color:red; }
¢</styles

OEBPS/Images/image00261.jpeg
<title>
RH Widgets Inc: Suppliers of Right-Handed Widgets
</title>

OEBPS/Images/image00260.jpeg
<head>
<title>Welcome to my website</title>
R

OEBPS/Images/image00259.jpeg
<!DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.01 Transitional//EN'
Thttp://www.w3.org/TR/htmld/loose.dtd' >

OEBPS/Images/image00258.jpeg

OEBPS/Images/image00257.jpeg

OEBPS/Images/image00256.jpeg
HTTP/1.1 301 Moved Permanently
/myserver.com/newlocation.html

OEBPS/Images/image00255.jpeg
ccas o s rmason s provses o puof v Mtianes
Dok ot W e does kb e spssniy o o iy
o

Fiomatenproviedy
Howto proceed
Retrnces o cbr omatonae epeseted e i Douie-cick
i o 1 s o
[General CERN Information sources
s i s ity g e
Syl camery s e oo msson e
s Yo 00 e e i s o o8 Y o
e Agrotenord st e

o o CERMVM i 0
it o CERAA b WAELED
o)

)
T T —
Soak by ncion

T vt o e e WoraW S e st
e iy m.umn.«».wm.m
i et b o o
s e g rnpebr e Vo e e

oot oo s . B v o S
b s o v evtss cosen s st oo
P yourlocapews (VNP srever . Type i oo

OEBPS/Images/cover00612.jpeg

OEBPS/Images/image00528.jpeg
context.tfillStyle = 'red'
context .fillRect (10, 10, 80, 30)

context.scale(1.6, 1.6)
context.fillStyle = 'vellow'

OEBPS/Images/image00529.jpeg
context.rillRect (10, 10, 80, 30)

context.scale(1.6, 1.6)
context.fillStyle = 'blue’'
context.fillRect (10, 10, 80, 30)

context.scale (1.6, 1.6)
context.fillStyle = 'green'
context .fillRect (10, 10, 80, 30)

OEBPS/Images/image00526.jpeg
context

context .

context

context .
.strokeRect (20, 20, 195, 75)

context

-StrokeStyle = 'read'

strokeRect (20, 20, 195, 75)

.scale(1.8, 1.5)

strokeStyle = 'blue’

OEBPS/Images/image00527.jpeg
[Scaling x
€ 5 C ft Qsalinglhtm

OEBPS/Images/image00532.jpeg
context.

context

context.
context.
context.
context.

context
context

context.
context.
context.
context.

context.

save ()

.fillStyle = 'red'

fillRect (10, 10, 80,
scale(l.6, 1.6)

fillStyle = 'yellow'
fillRect (10, 10, 80,

.scale(1.6, 1.6)
.fillStyle = 'blue’

fillRect (10, 10, 80,
scale(1.6, 1.6)

£illStyle = 'green'
fillRect (10, 10, 80,

restore()

OEBPS/Images/image00533.jpeg
context.fillStyle
context.fillRect (10,

OEBPS/Images/image00530.jpeg
More Scaling x

€ 2 C fi | saling2htm

F

OEBPS/Images/image00531.jpeg
context.scale(0.625, 0.625)
context .scale(0.625, 0.625)
context .scale(0.625, 0.625)

OEBPS/Images/image00534.jpeg
More Scaling

€« C fi Q scaling2htm

OEBPS/Images/image00535.jpeg
context

context .

context .
.fillStyle = 'pink'

context

context .

context .
context.
.fillRect (75, 0, 75, 75)

context

context .
context .
context .

context .
context .
context .

context .
context .
context .

context

context .

context .
.fillstyle = 'lime’'

context

context .

context .

context

context .

context

context .
.fillRect (75, 0, 75, 75)

context

.fillstyle = 'green'

fillRect (75, 0, 75, 75)

rotate (Math.PI / 20)

fillRect (75, 0, 75, 75

rotate (Math.PI / 20)
fillStyle = 'blue'

rotate (Math.PI / 20)
fillStyle = 'yellow '
fillRect (75, 0, 75, 75)

rotate (Math.PI / 20)
f£illStyle = 'red’
fillRect (75, 0, 75, 75)

rotate (Math.PI / 20)
£illStyle = 'violet'
£illRect (75, 0, 75, 75)

.rotate (Math.PI / 20)
context.

£illStyle = 'purple’
£illRect (75, 0, 75, 75)

rotate(Math.PI / 20)

fillRect (75, 0, 75, 75)

rotate (Math.PI / 20)

.fillStyle = 'plum'

fillRect (75, 0, 75, 75)

.rotate (Math.PI / 20)

£illStyle = 'brown'

OEBPS/Images/image00415.jpeg
context.fillStyle
context.fillRect (20, 30, 50, 70)

OEBPS/Images/image00536.jpeg

OEBPS/Images/image00517.jpeg
rage = (1magedata.data(0] +

imagedata.data([1] +
imagedata.data[2]) / 3

OEBPS/Images/image00518.jpeg
J Bl OiectPiei Accessing

€ & C fi Q imagedatahtm

OEBPS/Images/image00515.jpeg
imagedata
imagedata
imagedata
imagedata

-data(820]
.data[821]
.data[822]
.data[823]

// The
// The
// The
// The

red portion of:
green portion of:
blue portion of:
alpha portion of:

0,1
0,1
0,1

OEBPS/Images/image00516.jpeg
imagedata.data[x * 4 + y * w |
imagedata.datalx * 4 + y * w + 1] // Green
imagedata.datalx * 4 +y * w + 2] // Blue
imagedata.data[x * 4 + vy * w + 3] // Alpha

OEBPS/Images/image00521.jpeg
[l Direct Pixel Accessing *

€« C fi Q imagedatahtm

OEBPS/Images/image00522.jpeg
|/ Bl DirectPirel Accessing

€ & C A Qimagedatahtm

OEBPS/Images/image00519.jpeg
new Image()
image.src = 'boat.png'

image.onload = function()

context .drawImage (image, 0, 0)

imagedata = context.getImageData(0, 0, 205, 170)
width = 205

height = 170

for (y = 0 ; y < height ; ++y)

{

OEBPS/Images/image00520.jpeg
. |

Yy * width

0 ; x < width

average = (imagedata
imagedata
imagedata
for (j =0 ;
imagedata.data [pos

- <3

pos += 4

context .put ImageData (imagedata,

;%)
.data[pos 1+
.datalpos + 1] +
.datalpos + 2]) / 3

++3)
+ 3l =

average

205, 0)

OEBPS/Images/image00523.jpeg

OEBPS/Images/image00524.jpeg
source-cut

darker

OEBPS/Images/image00525.jpeg
[Compositing

& > C i A compositinghtm

x W\

0
)

source-over

00

00
A

source-in

) @

source-out

source-atop

-

lighter

OEBPS/Images/image00429.jpeg
[) More Gradients x

& & C fi 2 lineargradients2htm

OEBPS/Images/image00550.jpeg
position.coords.latitude
position.coords.longitude

OEBPS/Images/image00430.jpeg
gradient.addColorStop (0.0, '#FFF')
gradient.addColorStop (0.2, '#555')
gradient .addColorStop (1.0, '#000')

OEBPS/Images/image00551.jpeg
unction denied(error)
var message

switch(error.code)

{

case 1: message = 'Permission Denied'; break
case 2: message = 'Position Unavailable'; break
case 3: message = 'Operation Timed Out'; break
case 4: message = 'Unknown Error'; break

alert ('Error with Geolocation: ' + message)

OEBPS/Images/image00427.jpeg
dient = context.createlinearGradient (55, 10, 55, 160)
gradient.addColorStop (0, '#FFF')
gradient.addColorStop (1, '#000')
context.fillStyle = gradient
context .fillRect (10, 10, 90, 150)

OEBPS/Images/image00548.jpeg
1t (typeot navigator.geolocation == 'undefined')

alert ("Sorry, no Geolocation support.")
}

else

// Geolocation code goes here

OEBPS/Images/image00428.jpeg
gradient.addColorStop(0, '#F00')
gradient .addColorStop(l, 'yellow')

OEBPS/Images/image00549.jpeg
function granted(position)

alert('You are at location: '

+ position.coords.latitude + ',
+ position.coords.longitude)

OEBPS/Images/image00433.jpeg
/[More Gradients x \

€ & C fi Qlineargradients2htm

p

OEBPS/Images/image00554.jpeg
/' Il Geolocation Example x

mn

@ localhost wants to use your computer’s location.

Learn more

‘This example wil ask your browser for its location i it supports this feature.

OEBPS/Images/image00434.jpeg
More Gradients x \

€ & C f Qlineargradients2htm

OEBPS/Images/image00431.jpeg
/' [More Gradients x \

€ & C fi A lineargradients2htm

OEBPS/Images/image00552.jpeg
<!DOCTYPE html>
<html>
<head>
<title>Geolocation Example</title>
</head>
<body>
<p>This example will ask your browser for its location if it
supports this feature.</p>

<div id='status'></div>
= 'map' ></div>

<div i

<script src="https://maps.googleapis.com/maps/api/js?sensor=false">
</script>
<script>
if (typeof navigator.geolocation == 'undefined')
alert ('Geolocation not supported.')
else
navigator.geolocation.getCurrentPosition (granted, denied)

function granted (position)

{
O('status') .innerHTML = 'Permission Granted'
S('map') .border = '1px solid black'
S('map') .width = '640px’
S('map') .height = '320px’
var lat = position.coords.latitude

var long = position.coords.longitude

var gmap = O('map')
var gopts =
{

center: new google.maps.LatLng(lat, long),

zoom: 10, mapTypeId: google.maps.MapTypeId.SATELLITE
}

var map = new google.maps.Map (gmap, gopts)

OEBPS/Images/image00432.jpeg
ent
gradient .
gradient .
gradient .
gradient.
gradient.
gradient .

-addColorStop

addColorStop
addColorStop
addColorStop
addColorstop
addColorstop
addColorStop

FSososooo

00,
16,
33,

505

66,
83,

.00,

'red')
‘orange ')
'yellow')
‘green')
"blue')
'indigo')
'violet ')

OEBPS/Images/image00553.jpeg
function denied(error.
var message

switch (error.code)

{

case 1: message = 'Permission Denied';
case 2: message = 'Position Unavailable';
case 3: message = 'Operation Timed Out';
case 4: message = 'Unknown Error';

O('status').innerHTML = message

function O(obj)
{
if (typeof obj
else return document.getElementById(obj)

‘object’) return obj

function §(obj)
{

return 0(obj) .style

</script>
</body>
</html>

break
break
break
break

OEBPS/Images/image00315.jpeg
<table border='l' bgcolo:
cellpadding='5' cellspacing='5'>
<tr>
<td>Row 1, Col 1</td>
<td>Row 1, Col 2</td>
<td>Row 1, Col 3</td>
</tr>

450" height='200"

OEBPS/Images/image00436.jpeg
[') Pattem Examples x
€ 5 C f Q patternshtm

OEBPS/Images/image00557.jpeg

OEBPS/Images/image00316.jpeg
<tr>
<td>Row 2, Col 1</td>
<td>Row 2, Col 2</td>
<td>Row 2, Col 3</td>
</tr>
</table>

OEBPS/Images/image00437.jpeg
[Pattem Eamples x
€ 2 C fA Q patternshtm

OEBPS/Images/image00558.jpeg
<form action on'>

prog.php' method='post' autocomplet
<input type='text' name='fieldl' autocomplete='off's>

SIS

OEBPS/Images/image00555.jpeg
Geolocstion Example
/| P

-|o
* -
= C A | [localhost/geolocation.htm O
‘This example will ask your browser for its location if it supports this feature
Permission Granted
@(‘,omswlunonlmf r— & Mep | setelite
Constitution Hil S
{1 o0 Hill Constitution Hill
+
-l Victoria
Memorial O
Buckingham -,
Palace
uckingham
Palace Gordens
Buckinghem
Polace (+
Sl Garden Party
g, O= G TemsofUse

OEBPS/Images/image00435.jpeg
new Image ()

image.src = 'smiley-50.png’

image.onload = function()

pattern = context.createPattern(image,
context.fillStyle = pattern

context.fillRect (10, 10, 90,

'repeat ')

150)

OEBPS/Images/image00556.jpeg
center: new google.maps.LatLng(lat, long),
zoom: 10, mapTypeld: google.maps.MapTypeId.SATELLITE

OEBPS/Images/image00418.jpeg
gradient.addColorStop (0, '#FFF')
gradient .addColorStop (1, '#000')

OEBPS/Images/image00539.jpeg
context

context .

context

context .
.fillstyle = 'blue’'

context

context .

context

context .
context .

context .
context .

context

.rotate(Math.PI / 10)

f£illStyle = 'pink’

.fillRect (-60, -60, 120,

rotate (Math.PI / 10)

fillRect (-60, -60, 120,

.rotate (Math.PI / 10)

fillstyle = 'yellow'
fillRect (-60, -60, 120,

rotate (Math.PI / 10)
fillStyle = 'violet'

_fillRect (-60, -60, 120,

120)

120)

120)

120)

OEBPS/Images/image00419.jpeg
context.rillStyle
context . fillRect (10, 10, 90, 150)

OEBPS/Images/image00540.jpeg
[Rotating
€« C fi QA rotatehtm

OEBPS/Images/image00416.jpeg
context.fillStyle = 'red'
context.fillRect (10, 10, 150, 150
context.clearRect (20, 20, 130, 130

context .strokeRect (30, 30, 110, 110)

OEBPS/Images/image00537.jpeg
degToRad (val)

return val * Math.PI / 180

OEBPS/Images/image00417.jpeg
[Rectangle eamples X

€ & C fi A rectangleshtm

OEBPS/Images/image00538.jpeg
context.translate (280, 85)
context.fillStyle = 'green’
context .fillRect (-60, -60, 120, 120)

OEBPS/Images/image00422.jpeg
context.createlinearGradient (210, 10, 300, 160)
context .fillRect (210, 10, 90, 150)

OEBPS/Images/image00543.jpeg
context

context .

context

context .

context

context .
context .

context .
context .
context .
context .
context .

context .
context .
context .
context .
.fillRect (35, 35, 50,

context

-fillstyle

'green’
fillRect (35, 35, 50,

.restore ()

save ()

.transform(1, 0.7, 0,

fillStyle = 'orange'
£illRect (35, 35, 50,

restore()

save ()

transform(1, 0, 0.7,
£illStyle = 'violet'
£illRect (35, 35, 50,

restore ()
save ()

50)

1,

transform(1, 0.7, 0.7, 1

£illStyle = 'red'

50)

o0,

0)

0,

0)

OEBPS/Images/image00423.jpeg
) Linear Gradients x

€l C ft Q lineargradients1.htm

OEBPS/Images/image00544.jpeg
[Transformation x

€ > C fi A transformhtm

OEBPS/Images/image00420.jpeg

OEBPS/Images/image00541.jpeg
context.tillStyle = 'green'
context.fillRect (35, 35, 50, 50)
context .transform(2, 0, 0, 1.5, 0, 0)
context.fillStyle = 'blue’
context.fillRect (35, 35, 50, 50)

OEBPS/Images/image00421.jpeg
) Linear Gradients x\

€ C fi Q lineargradients.htm

OEBPS/Images/image00542.jpeg
/[Trensformation x

€ 5 C fi A transformhtm

OEBPS/Images/image00424.jpeg
context.createRadialGradient (355, 85, 0, 355, 85, 45)
context .fillRect (310, 10, 90, 150)

OEBPS/Images/image00425.jpeg
") Linear Gradients x

€« C fi A lineargradients1.htm

OEBPS/Images/image00546.jpeg
[Transformation x

€ > C fi A transformhtm

N

OEBPS/Images/image00426.jpeg
" Linear Gradients x

€« C A Q lineargradients1.htm

ala

OEBPS/Images/image00547.jpeg

OEBPS/Images/image00545.jpeg
context.transtorm(l, 0.7, 0, 1, -30, 20)
context.transform(1, 0, 0.7, 1, 20, -30)
context .transform(l, 0.7, 0.7, 1, 25, 25)

