

About	the	Author
Robin	Nixon	is	a	prolific	author	on	programming	and	web	development	(as	well	as
psychology	and	motivation),	whose	books	have	been	translated	into	numerous	foreign
languages—frequently	topping	the	U.S.	and	international	computer	book	charts.	He	has
worked	with	computers	and	technology	all	of	his	life,	and	began	writing	about	the	subject
about	35	years	ago.

He	has	authored	hundreds	of	articles,	and	over	two	dozen	books,	and	is	a	popular
video	and	online	instructor,	with	thousands	of	students	taking	his	courses.	Robin	is	also	an
accomplished	programmer,	developer,	and	entrepreneur,	with	several	successful	Internet
startups	to	his	name,	from	which	he	has	learned	a	wealth	of	programming	hints	and	tips,
which	he	enjoys	passing	on	in	his	expanding	range	of	web	development	books,	including
the	following	titles:

•			CSS	&	CSS3:	20	Lessons	to	Successful	Web	Development	(McGraw-Hill
Education,	2015)

•			JavaScript:	20	Lessons	to	Successful	Web	Development	(McGraw-Hill
Education,	2015)

•			PHP:	20	Lessons	to	Successful	Web	Development	(McGraw-Hill	Education,
2015)

•			Learning	PHP,	MySQL,	JavaScript,	CSS	&	HTML5	(O’Reilly,	2014)

•			Web	Developer’s	Cookbook	(McGraw-Hill	Education,	2012)

•			HTML5	for	iOS	and	Android	(McGraw-Hill	Education,	2010)

About	the	Technical	Editor
Albert	Wiersch	has	been	writing	software	since	the	Commodore	VIC-20	and
Commodore	64	days	in	the	early	1980s.	He	holds	a	Bachelor	of	Science	degree	in
Computer	Science	Engineering	and	an	MBA	from	the	University	of	Texas	at	Arlington.
Albert	currently	develops	and	sells	software	that	helps	web	developers,	educators,
students,	businesses,	and	government	agencies	check	their	HTML	and	CSS	documents
and	their	websites	for	quality	problems,	including	many	SEO	(search	engine
optimization),	mobility,	and	accessibility	issues,	with	discounts	made	available	to
students.	His	web	site	is	at	HTMLValidator.com.

Copyright	©	2015	by	McGraw-Hill	Education.	All	rights	reserved.	Except	as	permitted
under	the	United	States	Copyright	Act	of	1976,	no	part	of	this	publication	may	be
reproduced	or	distributed	in	any	form	or	by	any	means,	or	stored	in	a	database	or	retrieval
system,	without	the	prior	written	permission	of	the	publisher,	with	the	exception	that	the
program	listings	may	be	entered,	stored,	and	executed	in	a	computer	system,	but	they	may
not	be	reproduced	for	publication.

ISBN:	978-0-07-183768-2
MHID:							0-07-183768-X

The	material	in	this	eBook	also	appears	in	the	print	version	of	this	title:	ISBN:	978-0-07-
184155-9,	MHID:	0-07-184155-5.

eBook	conversion	by	codeMantra
Version	1.0

All	trademarks	are	trademarks	of	their	respective	owners.	Rather	than	put	a	trademark
symbol	after	every	occurrence	of	a	trademarked	name,	we	use	names	in	an	editorial
fashion	only,	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement
of	the	trademark.	Where	such	designations	appear	in	this	book,	they	have	been	printed
with	initial	caps.

McGraw-Hill	Education	eBooks	are	available	at	special	quantity	discounts	to	use	as
premiums	and	sales	promotions	or	for	use	in	corporate	training	programs.	To	contact	a
representative,	please	visit	the	Contact	Us	page	at	www.mhprofessional.com.

Information	has	been	obtained	by	McGraw-Hill	Education	from	sources	believed	to	be
reliable.	However,	because	of	the	possibility	of	human	or	mechanical	error	by	our	sources,
McGraw-Hill	Education,	or	others,	McGraw-Hill	Education	does	not	guarantee	the
accuracy,	adequacy,	or	completeness	of	any	information	and	is	not	responsible	for	any
errors	or	omissions	or	the	results	obtained	from	the	use	of	such	information.

TERMS	OF	USE

This	is	a	copyrighted	work	and	McGraw-Hill	Education	and	its	licensors	reserve	all	rights
in	and	to	the	work.	Use	of	this	work	is	subject	to	these	terms.	Except	as	permitted	under
the	Copyright	Act	of	1976	and	the	right	to	store	and	retrieve	one	copy	of	the	work,	you
may	not	decompile,	disassemble,	reverse	engineer,	reproduce,	modify,	create	derivative
works	based	upon,	transmit,	distribute,	disseminate,	sell,	publish	or	sublicense	the	work	or
any	part	of	it	without	McGraw-Hill	Education’s	prior	consent.	You	may	use	the	work	for
your	own	noncommercial	and	personal	use;	any	other	use	of	the	work	is	strictly
prohibited.	Your	right	to	use	the	work	may	be	terminated	if	you	fail	to	comply	with	these
terms.

THE	WORK	IS	PROVIDED	“AS	IS.”	McGRAW-HILL	EDUCATION	AND	ITS
LICENSORS	MAKE	NO	GUARANTEES	OR	WARRANTIES	AS	TO	THE
ACCURACY,	ADEQUACY	OR	COMPLETENESS	OF	OR	RESULTS	TO	BE
OBTAINED	FROM	USING	THE	WORK,	INCLUDING	ANY	INFORMATION	THAT
CAN	BE	ACCESSED	THROUGH	THE	WORK	VIA	HYPERLINK	OR	OTHERWISE,
AND	EXPRESSLY	DISCLAIM	ANY	WARRANTY,	EXPRESS	OR	IMPLIED,
INCLUDING	BUT	NOT	LIMITED	TO	IMPLIED	WARRANTIES	OF

http://www.mhprofessional.com

MERCHANTABILITY	OR	FITNESS	FOR	A	PARTICULAR	PURPOSE.	McGraw-Hill
Education	and	its	licensors	do	not	warrant	or	guarantee	that	the	functions	contained	in	the
work	will	meet	your	requirements	or	that	its	operation	will	be	uninterrupted	or	error	free.
Neither	McGraw-Hill	Education	nor	its	licensors	shall	be	liable	to	you	or	anyone	else	for
any	inaccuracy,	error	or	omission,	regardless	of	cause,	in	the	work	or	for	any	damages
resulting	therefrom.	McGraw-Hill	Education	has	no	responsibility	for	the	content	of	any
information	accessed	through	the	work.	Under	no	circumstances	shall	McGraw-Hill
Education	and/or	its	licensors	be	liable	for	any	indirect,	incidental,	special,	punitive,
consequential	or	similar	damages	that	result	from	the	use	of	or	inability	to	use	the	work,
even	if	any	of	them	has	been	advised	of	the	possibility	of	such	damages.	This	limitation	of
liability	shall	apply	to	any	claim	or	cause	whatsoever	whether	such	claim	or	cause	arises
in	contract,	tort	or	otherwise.

To	Julie

Contents	at	a	Glance

PART	I						Basic	HTML
1						An	Introduction	to	HTML

2						The	Layout	of	an	HTML	Document

3						The	HTML	Document	Body

4						Fonts,	Colors,	and	Images

5						Creating	Lists	and	Tables

6						Links,	Forms,	and	Frames

7						Using	the	Remaining	HTML4	Tags

PART	II				HTML5	and	the	Canvas
8						What’s	New	in	HTML5

9						Accessing	the	Canvas

10				Creating	Rectangles,	Fills,	Gradients,	and	Patterns

11				Writing	Text	to	the	Canvas

12				Drawing	Lines,	Paths,	and	Curves

13				Manipulating	Images,	Shadows,	and	Pixels

14				Compositing,	Transparency,	and	Transformations

PART	III			Advanced	HTML5
15				Supporting	Geolocation

16				Building	Advanced	Forms

17				Implementing	Local	Storage	and	Cross-Document	Messaging

18				Playing	Audio

19				Displaying	Video

20				Working	with	Microdata,	Web	Workers,	and	Web	Applications

A					Answers	to	the	Self-Test	Questions

Index

Contents

Acknowledgments

Introduction

PART	I				Basic	HTML

LESSON	1				An	Introduction	to	HTML
What	Is	HTML?

HTTP	and	HTML	Basics

The	Request/Response	Sequence

The	Difference	Between	Get	and	Post	Requests

HTML	Tags

Tag	Attributes

Summary

Self-Test	Questions

LESSON	2				The	Layout	of	an	HTML	Document
The	<!DOCTYPE>	Declaration

Internet	Explorer	Tweak	for	Local	Documents

The	<html>	Tag

The	<head>	Tag

Creating	a	Document	Title

Including	Style	Sheets

Incorporating	JavaScript

Passing	Metadata

The	<body>	Tag

Summary

Self-Test	Questions

LESSON	3				The	HTML	Document	Body
Inserting	Comments

The	HTML	4.01	Tags

The	<div>	and		Tags

Headings

Paragraphs

Line	Breaks

Text	Emphasis

Summary

Self-Test	Questions

LESSON	4				Fonts,	Colors,	and	Images
Changing	Font	Face	and	Color

	…	

	…	

	…	
<basefont>

<body	bgcolor=′…′>

The	Named	Colors

Coloring	by	Numbers

Font	Faces

Displaying	Images

Summary

Self-Test	Questions

LESSON	5				Creating	Lists	and	Tables
Building	Lists

Overriding	the	Defaults

Definition	Lists

Creating	Tables

Table	Rows	and	Columns

Extending	Rows	and	Columns

Summary

Self-Test	Questions

LESSON	6				Links,	Forms,	and	Frames
Using	Hyperlinks

The	Query	String

Relative	URLs

Creating	Links

Building	Forms

The	<input>	Tag

The	<textarea>	Tag

The	<select>	Tag

The	<button>	Tag

The	<label>	Tag

Frames	and	Iframes

Summary

Self-Test	Questions

LESSON	7				Using	the	Remaining	HTML4	Tags
Conditional	HTML	for	Internet	Explorer

Simple	Comparisons

Higher	or	Lower	Values

The	Not	Operator

The	Mark	of	the	Web

<abbr>	…	</abbr>

<acronym>	…	</acronym>	(Obsolete)

<address>	…	</address>

<applet>	…	</applet>	(Obsolete)
<area>

<base>

<basefont>	(Obsolete)

<bdo>	…	</bdo>

<big>	…	</big>	(Obsolete)	and	<small>	…	</small>

<blockquote>	…	</blockquote>

<center>	…	</center>	(Obsolete)

<cite>	…	</cite>

<code>	…	</code>

<col>	and	<colgroup>

	…	

<fieldset>	…	</fieldset>

	…		(Obsolete)

<frameset>	(Obsolete)
<hr>

<iframe>	…	</iframe>

<isindex>	…	</isindex>	(Obsolete)

<menu>	…	</menu>	(Reserved)

<optgroup>	…	</optgroup>

_…	and	[…]

Summary

Self-Test	Questions

PART	II				HTML5	and	the	Canvas

LESSON	8				What’s	New	in	HTML5
The	Canvas

Geolocation

Forms

Local	Storage

Audio	and	Video

The	<embed>	Tag

Microdata

Web	Workers

Web	Applications

Still	to	Come

Summary

Self-Test	Questions

LESSON	9				Accessing	the	Canvas
An	Ultra-Crash	Course	in	JavaScript

Accessing	Form	Elements	from	JavaScript

Using	the	getElementById()	Function

The	Simpler	O()	Function

The	Partner	S()	Function

The	<canvas>	Tag

Accessing	the	Canvas	with	JavaScript

Converting	a	Canvas	to	an	Image

Summary

Self-Test	Questions

LESSON	10		Creating	Rectangles,	Fills,	Gradients,
and	Patterns

Drawing	Rectangles

The	fillRect()	Function

The	fillStyle	Property

The	clearRect()	Function

The	strokeRect()	Function

Creating	Gradients

The	createLinearGradient()	Function

The	createRadialGradient()	Function

The	addColorStop()	Function

Using	Patterns

The	createPattern()	Function

Summary

Self-Test	Questions

LESSON	11		Writing	Text	to	the	Canvas
Writing	Text

The	font	Property

The	strokeText()	Function

The	textAlign	Property

The	textBaseline	Property

The	fillText()	Function

Determining	Text	Width

Summary

Self-Test	Questions

LESSON	12		Drawing	Lines,	Paths,	and	Curves
Drawing	Lines

The	lineWidth	Property

The	lineCap	Property

The	lineJoin	Property

The	miterLimit	Property

Drawing	with	Paths

The	beginPath()	and	closePath()	Functions

The	moveTo()	and	lineTo()	Functions

The	stroke()	Function

The	rect()	Function

The	fill()	Function

The	clip()	Function

The	isPointInPath()	Function

Creating	Curves

The	arc()	Function

The	arcTo()	Function

The	quadraticCurveTo()	Function

The	bezierCurveTo()	Function

Summary

Self-Test	Questions

LESSON	13		Manipulating	Images,	Shadows,	and
Pixels

Using	Images

The	drawImage()	Function

Adding	Shadows

Pixel	Editing

The	getImageData()	Function

The	data[]	Array

The	putImageData()	Function

The	createImageData()	Function

Summary

Self-Test	Questions

LESSON	14		Compositing,	Transparency,	and
Transformations

Compositing	and	Transparency

The	globalCompositeOperation	Property

The	globalAlpha	Property

Using	Transformations

The	scale()	Function

The	save()	and	restore()	Functions

The	rotate()	Function

The	translate()	Function

The	transform()	Function

The	setTransform()	Function

Summary

Self-Test	Questions

PART	III				Advanced	HTML

LESSON	15		Supporting	Geolocation
Accessing	Geolocation	with	JavaScript

The	geolocation	Property

The	getCurrentPosition()	Function

In	the	Real	World

The	GPS	Service

Other	Location	Methods

Summary

Self-Test	Questions

LESSON	16		Building	Advanced	Forms
New	Form	Attributes

The	autocomplete	Attribute

The	autofocus	Attribute

The	form	Attribute

Form	Overrides

The	formaction	Attribute

The	formenctype	Attribute

The	formmethod	Attribute

The	formnovalidate	Attribute

The	formtarget	Attribute

The	height	and	width	Attributes

The	list	Attribute	and	<datalist>	and	<option>	Tags

The	min	and	max	Attributes

The	multiple	Attribute

The	novalidate	and	formnovalidate	Attributes

The	pattern	Attribute

The	placeholder	Attribute

The	required	Attribute

The	step	Attribute

New	Form	Input	Types

The	color	Input	Type

Date	and	Time	Pickers

The	date	Input	Type

The	month	Input	Type

The	time	Input	Type

The	week	Input	Type

The	datetime	Input	Type

The	datetime-local	Input	Type

The	email	Input	Type

The	number	Input	Type

The	range	Input	Type

The	search	Input	Type

The	tel	Input	Type

The	url	Input	Type

Summary

Self-Test	Questions

LESSON	17		Implementing	Local	Storage	and	Cross-
Document	Messaging

Using	Local	Storage

Storing	and	Retrieving	Local	Data

Removing	and	Clearing	Local	Data

Cross-Document	Messaging

Summary

Self-Test	Questions

LESSON	18		Playing	Audio
Understanding	Codecs

The	<audio>	and	<source>	Tags

The	<audio>	and	<source>	Tag	Attributes

Supporting	Older	Browsers

Summary

Self-Test	Questions

LESSON	19		Displaying	Video
The	Video	Codecs

The	<video>	and	<source>	Tags

The	<video>	and	<source>	Tag	Attributes

Summary

Self-Test	Questions

LESSON	20		Working	with	Microdata,	Web
Workers,	and	Web	Applications

Microdata

Web	Workers

Offline	Web	Applications

Drag	and	Drop

Other	HTML5	Tags

Summary

Self-Test	Questions

APPENDIX		Answers	to	the	Self-Test	Questions
Lesson	1	Answers

Lesson	2	Answers

Lesson	3	Answers

Lesson	4	Answers

Lesson	5	Answers

Lesson	6	Answers

Lesson	7	Answers

Lesson	8	Answers

Lesson	9	Answers

Lesson	10	Answers

Lesson	11	Answers

Lesson	12	Answers

Lesson	13	Answers

Lesson	14	Answers

Lesson	15	Answers

Lesson	16	Answers

Lesson	17	Answers

Lesson	18	Answers

Lesson	19	Answers

Lesson	20	Answers

Index

Acknowledgments

Once	again	I	would	like	to	thank	the	amazing	team	at	McGraw-Hill	Education,	with
whom	it	is	always	a	real	pleasure	to	work	on	new	book	projects.	In	particular	I	would	like
to	thank	my	Sponsoring	Editor	Brandi	Shailer,	Amanda	Russell	for	overseeing	the
project’s	development,	Editorial	Supervisor	Jody	McKenzie,	Production	Supervisor	Jean
Bodeaux,	Copy	Editor	Margaret	Berson,	and	Jeff	Weeks	for	the	excellent	cover	design.
Thanks	also	goes	again	to	Albert	Wiersch	(whom	I	have	had	the	pleasure	of	working	with
on	a	number	of	occasions)	for	his	meticulous	eye	for	detail	during	technical	review.

Introduction

Why	This	Book?
The	concept	for	this	book	grew	out	of	Robin’s	extremely	popular	online	courses	in	which
thousands	of	students	are	enrolled.	From	their	feedback,	it	became	evident	that	the	reason
for	this	popularity	was	that	students	love	the	way	the	material	is	broken	up	into	easy-to-
digest	lessons,	each	of	which	can	be	completed	in	an	hour	or	less.	They	also	like	the	no-
nonsense,	jargon-free,	and	friendly	writing	style.

Now,	working	together,	Robin	and	McGraw-Hill	Education	have	further	revised,
updated,	and	developed	his	HTML5	course	into	this	book,	which	not	only	will	teach	you
everything	you	need	to	learn	in	20	lessons	(of	less	than	an	hour	each),	but	it	also	includes
an	average	15-minute	detailed	video	walkthrough	for	each	lesson—almost	five	hours	of
footage	in	total.	Watch	the	videos	after	reading	the	lesson	to	reinforce	key	concepts,	or	use
the	video	as	a	primer	to	working	through	each	print	lesson.	Together,	the	book	and	videos
make	learning	HTML5	easier	than	it	has	ever	been,	and	they	are	the	ideal	way	for	you	to
add	HTML5	skills	to	your	web	development	toolkit.

Access	the	videos	by	going	to	mhprofessional.com/nixonhtml5/.

Who	Should	Read	This	Book
Each	chapter	is	laid	out	as	a	lesson	in	a	straightforward	and	logical	manner,	with	plenty	of
examples	written	using	simple	and	clear	HTML.	Before	moving	on	to	each	subsequent
lesson,	you	have	the	opportunity	to	test	your	new	knowledge	with	a	set	of	10	questions
about	what	you	have	just	learned.	You	can	also	work	along	with	every	lesson	by	watching
its	accompanying	video	tutorial.

Even	if	you	don’t	already	know	the	previous	version	of	HTML	(version	4.1),	you	will
still	learn	quickly,	because	the	first	part	of	the	book	contains	a	comprehensive	primer—
great	for	beginners,	or	useful	for	revising	before	moving	on	to	the	new	features.

To	save	you	typing	them	in,	all	the	example	files	from	the	book	are	saved	in	a	freely
downloadable	zip	file	available	at	the	companion	website:	20lessons.com.

What	This	Book	Covers
This	book	covers	every	aspect	of	HTML	and	HTML5,	starting	with	how	to	lay	out	an
HTML	document;	handling	fonts,	colors,	and	images;	creating	lists	and	tables;	and
building	forms.	Then,	after	teaching	some	elementary	JavaScript,	it	explains	how	to	use

http://www.mhprofessional.com/nixonhtml5
http://www.20lessons.com

the	HTML5	canvas	as	a	drawing	tool,	shows	how	you	can	access	a	user’s	geolocation
information,	presents	the	latest	updates	to	web	forms,	reveals	how	to	make	use	of	local
storage	on	the	user’s	device	and,	after	illustrating	how	easy	it	now	is	to	add	audio	and
video	to	your	pages,	also	details	how	to	make	offline	web	apps,	and	run	background
JavaScript	tasks.

How	to	Use	This	Book
This	book	has	been	written	in	a	logical	order	so	that	each	lesson	builds	on	information
learned	in	the	previous	ones.	If	you	have	never	used	HTML	before,	you	should	begin	at
Lesson	1	and	then	work	sequentially	through	the	book,	proceeding	to	the	next	lesson	only
when	you	can	correctly	answer	the	self-test	questions	in	the	previous	one.

If	you	already	use	HTML4.1,	you	can	jump	right	into	the	HTML5	section,	but	I
recommend	you	at	least	browse	through	the	earlier	lessons	to	refresh	your	memory	of	all
the	available	features,	many	of	which	have	been	updated	in	HTML5.

How	Is	This	Book	Organized?
Although	this	book	has	three	parts,	they	consist	of	just	two	approaches.	The	first	deals
with	teaching	all	the	HTML4	elements	and	how	they	go	together	to	make	up	an	HTML
document,	while	the	second	explains	the	enhancements	that	have	been	added	to	HTML5.

In	Part	I,	“Basic	HTML,”	the	lessons	include:	An	Introduction	to	HTML4;	the	Layout
of	an	HTML	Document;	the	HTML	Document	Body;	Fonts,	Colors,	and	Images;	Creating
Lists	and	Tables;	Links,	Forms,	and	Frames;	and	Using	the	Remaining	HTML4	Tags.

Part	II,	“HTML5	and	the	Canvas,”	includes	these	lessons:	What’s	New	in	HTML5;
Accessing	the	Canvas;	Creating	Rectangles,	Fills,	Gradients,	and	Patterns;	Writing	Text	to
the	Canvas;	Drawing	Lines,	Paths,	and	Curves;	Manipulating	Images,	Shadows,	and
Pixels;	Compositing,	Transparency,	and	Transformations.

Part	III,	“Advanced	HTML5,”	includes	these	lessons:	Supporting	Geolocation;
Building	Advanced	Forms;	Implementing	Local	Storage	and	Cross-document	Messaging;
Playing	Audio;	Displaying	Video;	and	Working	with	Microdata,	Web	Workers,	and	Web
Applications.

The	Appendix	lists	all	the	answers	to	the	self-test	questions	in	each	chapter.

PART	I

Basic	HTML

I

An	Introduction	to	HTML

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

n	his	famous	play	for	radio,	Under	Milk	Wood,	the	poet	Dylan	Thomas	chose	to	start
with	the	words	“To	begin	at	the	beginning,”	and	that	seems	also	the	appropriate	place	to

start	this	book	on	HTML5,	because	many	of	you	will	be	new	to	HTML,	while	others	will
be	seasoned	professionals	who	wish	to	add	the	new	skills	of	HTML5	to	your	toolkit.

If	you	are	new	to	web	development,	simply	work	your	way	through	the	entire	book,	or
if	you	already	use	HTML,	I	still	recommend	that	you	browse	through	these	early	lessons
as	a	refresher	before	moving	on	to	the	HTML5	elements	(often	called	tags).	So	let’s	start
at	the	beginning	and	look	at	what	HTML	is	all	about.

Each	lesson	includes	examples	and	screen	grabs	to	illustrate	the	techniques	being
explained,	and	you	can	download	the	example	files	from	the	companion	website,	at
20lessons.com.	There	is	a	.zip	archive	file	downloadable	from	the	front	page	in	which
each	lesson	has	its	own	folder,	within	which	you	will	find	the	example	files	and	associated
content.	For	example,	the	examples	from	this	lesson	are	all	in	the	lesson01	folder.

What	Is	HTML?
HTML	stands	for	HyperText	Markup	Language,	and	it	was	invented	by	Sir	Timothy
Berners-Lee	in	the	early	1990s	to	solve	the	problem	of	quickly	and	efficiently	distributing
documents	between	scientists	around	the	world	who	were	working	with	experimenters	at
CERN	(the	European	Laboratory	for	Particle	Physics,	where	the	Large	Hadron	Collider	is
now	also	situated).

The	Internet	was	already	in	place	and	there	were	tens	of	thousands	of	computers
connected	to	each	other	using	it,	but	there	was	no	easy	means	of	publishing	content	for	all
to	see,	and	in	which	references	to	other	documents	could	be	easily	followed.	So	Berners-
Lee	created	a	hyperlinking	framework	he	called	the	Hyper	Text	Transfer	Protocol,	or
HTTP	(the	same	set	of	letters	at	the	front	of	a	web	address).	He	also	created	a	language	to
use	this	protocol,	which	he	called	HTML	(for	Hyper	Text	Markup	Language).	To	utilize
both	these	new	inventions,	he	also	wrote	the	world’s	first	web	browser,	of	which	Figure	1-
1	is	a	screenshot.

http://www.mhprofessional.com/nixonhtml5
http://www.20lessons.com

FIGURE	1-1	Berners-Lee’s	original	NextEditor	browser

This	was	a	remarkable	invention	and	was	widely	hailed	in	the	computer	press	of	the
time	as	heralding	a	new	age	of	communication.	Until	then	the	best	connectivity	computer
users	had	experienced	was	dialing	in	to	a	local	bulletin	board,	usually	with	only	one,	or	at
the	most	just	a	few,	phone	lines	attached.	You	could	then	upload	or	download	files	and
read	and	leave	messages,	but	then	you	had	to	log	off	again	to	allow	other	people	to	take
your	place.	Occasionally	these	bulletin	boards	would	swap	messages	every	few	days	with
other	boards,	so	users	could	interact	with	people	further	away,	but	only	with	a	huge	delay.

But	right	away	HTML	changed	everything	because	now	there	was	a	way	for	all	these
bulletin	boards	and,	in	fact,	any	computers	to	stay	in	touch	with	each	other,	and	documents
could	be	stored	in	a	multitude	of	places,	which	now	were	only	ever	a	click	away.	People
all	over	the	world	could	connect	to	a	local	Internet	host	and	immediately	be	in	touch	with
any	other	person	logged	in	to	any	other	web-connected	computer.	It’s	hard	to	feel	that	way
about	it	now	that	we’ve	had	the	internet	for	so	long,	but	at	the	time	it	was	revolutionary,
and	within	the	course	of	a	few	years,	there	were	three	major	graphical	browsers	and	more
than	five	million	Internet	users—while	today	that	has	mushroomed	into	over	two	billion
people	who	regularly	use	the	Web!

HTTP	and	HTML	Basics

Let’s	look	more	closely	at	these	two	acronyms,	starting	with	HTTP,	which	is	the
communication	standard	used	for	controlling	the	requests	and	responses	that	occur
between	a	web	browser	running	on	your	computer	and	a	web	server,	and	stands	for
HyperText	Transfer	Protocol.

The	job	of	the	web	server	is	to	accept	a	request	from	a	client	such	as	a	web	browser
and	then	to	reply	to	it	in	the	most	meaningful	way	it	can,	generally	(as	far	as	you	are
concerned)	by	simply	returning	the	contents	of	a	requested	document,	but	in	the	process
many	other	requests	and	responses	also	take	place.	This	returning	of	a	web	page	is	called
serving,	which	is	why	the	web	server	is	so	named.

In	between	a	client	and	server	there	can	be	a	multitude	of	other	computers	and	devices
such	as	routers,	gateways,	and	proxies.	A	web	router	chooses	the	best	route	to	use	in	order
to	transfer	data	as	fast	as	possible	between	the	client	and	server.	Gateways	are	nodes	on
the	edge	of	one	network	that	act	as	a	connection	from	it	to	another,	and	proxies	support
indirect	connections	by	acting	as	if	they	are	the	destination	(or	server),	and	then	fetching
the	data	you	request	and	returning	it	to	you,	often	employing	a	cache	in	which	commonly
requested	documents	are	stored	to	save	fetching	them	repeatedly.

These	devices	generally	use	an	Internet	protocol	suite	called	TCP/IP	for	sending	all
this	information	flying	across	the	Web,	although	there	are	other	protocols	that	could	be
used	to	send	HTML	data	(but	which	generally	aren’t,	and	are	therefore	beyond	the	scope
of	this	book).

Unlike	the	bulletin	boards	mentioned	earlier,	which	supported	only	one	user	for	each
connected	telephone	line,	web	servers	can	use	a	single	Internet	connection	to	allow
dozens,	hundreds,	or	even	thousands	of	simultaneous	users	at	a	time	(depending	on	the
power	of	the	server).

Each	web	server	spends	much	of	its	time	simply	listening	for	incoming	requests.
When	one	arrives,	the	server	returns	a	response	to	confirm	safe	receipt	of	the	request.	It
does	this	by	sending	a	status	message	such	as	the	following	back	to	the	client:
HTTP/1.1	200	OK

After	this	the	server	then	sends	its	own	message,	which	generally	will	be	the
document	that	was	requested	by	the	client,	or	it	could	be	an	error	message	if	the	document
was	not	found.

If	a	document	is	returned,	it	can	be	in	any	format	such	as	audio,	video,	images,	or,
most	commonly,	HTML,	which	consists	of	a	simple	text	file	within	which	the	text	is
separated	into	different	sections	using	a	special	set	of	markup	tags,	and	which	commonly
will	have	the	extension	.htm	or	.html	(although	any	extension	is	acceptable,	as	long	as	the
server	knows	about	it).	To	indicate	that	this	type	of	file	is	being	sent	to	the	client,	a	web
server	will	begin	the	document	with	a	header	telling	the	client	about	it,	which	will	look
like	this:
Content-Type:	text/html;	charset=utf-8

Here	the	type	of	document	is	clearly	specified	to	be	HTML,	and	the	character
encoding	used	by	the	file	is	set	to	utf-8.	But	other	header	types	could	also	be	sent.	For
example,	if	the	requested	document	has	been	moved	to	a	new	location,	the	web	server

might,	instead,	return	the	following	headers:

The	first	header	tells	the	client	that	the	document	has	moved	and,	instead	of	sending
the	document,	the	second	line	states	where	the	document	can	now	be	found.	Then	it’s	the
client’s	job	to	go	off	and	request	the	document	from	the	new	location,	which	could	be	on
the	same	or	a	different	web	server.

As	you	might	imagine,	there	are	many	more	different	types	of	headers	and
information	that	can	be	sent	back	and	forward	between	web	servers	and	clients,	of	which
the	most	common	one	you	may	encounter	is	the	following:
HTTP/1.0	404	Not	Found

After	sending	this	header,	the	web	server	will	then	serve	up	a	page	explaining	why	the
document	could	not	be	found.	Because	of	the	header	response	code	of	404,	these	pages	are
often	referred	to	as	“404”	pages.

The	Request/Response	Sequence
Following	is	an	example	of	a	web	client	talking	to	a	web	server	from	which	it	is
requesting	a	file:

1.			You	enter	a	URL	such	as	http://myserver.com	into	your	browser.

2.			Your	browser	looks	up	the	IP	address	for	myserver.com.

3.			Your	browser	issues	a	request	for	the	home	page	from	myserver.com.

4.			The	request	crosses	the	Internet	and	arrives	at	the	myserver.com	web	server.

5.			The	web	server	looks	for	the	web	page	on	its	hard	disk.

6.			The	web	page	is	retrieved	by	the	server	and	returned	to	the	browser.

7.			Your	browser	displays	the	web	page.

In	Step	1,	the	user	enters	a	URL	(Uniform	Resource	Locator),	also	known	as	a	web
address,	into	the	browser’s	input	field.	In	this	instance	the	root	document	(or	home	page)
is	being	requested.	Once	the	browser	receives	the	request,	then	in	Step	2,	it	makes	a
request	to	a	set	of	servers	on	the	Internet	known	as	domain	name	servers.	These	translate
sequences	of	letters	such	as	myserver.com	into	an	IP	address,	which	consists	of	four
groups	of	numbers	separated	by	periods,	like	this:	74.125.224.72.	In	fact,	all	websites
reside	at	IP	addresses	and	you	can	demonstrate	this	by	entering	http://74.125.224.72	into	a
web	browser,	which	should	take	you	to	Google’s	website.

However,	it’s	difficult	to	remember	such	groups	of	numbers	(and	is	even	more	so
since	IPV6	was	introduced!).	Therefore	a	system	called	DNS	(Domain	Name	System)	was
invented,	which	simply	stores	domain	names	alongside	their	IP	addresses,	so	that	all	you
need	to	do	is	enter	http://google.com,	rather	than	an	obscure	set	of	numbers.	Your	browser
then	performs	a	DNS	lookup,	discovers	that	the	IP	this	domain	refers	to	is	74.125.224.72
and	then	initiates	discussions	directly	with	the	web	server	at	that	address,	as	shown	in	Step

http://www.myserver.com
http://www.myserver.com
http://www.myserver.com
http://www.myserver.com
http://www.myserver.com
http://74.125.224.72

3.

In	Step	4,	the	request	your	browser	makes	to	the	web	server	traverses	the	Internet	and
arrives	at	the	destination	server	where,	in	Step	5,	the	page	requested	(in	this	instance	the
home	page),	is	fetched	from	the	server’s	file	system.	In	Step	6,	the	web	server	then
transmits	that	page	(preceded	by	a	header)	back	to	your	web	browser,	which	then	displays
the	page	in	Step	7.

If	the	page	was	not	found	then	in	Step	6,	an	appropriate	error	header	will	be	returned
to	the	web	browser.	Also,	web	server	scripting	languages	such	as	Perl	and	PHP	may	first
manipulate	the	document	and	its	contents	by	adding,	removing,	or	changing	contents
according	to	any	embedded	scripting	commands.	Such	documents	are	generally
recognizable	by	their	commonly	used	file	extensions	of	.pl	and	.php.

The	Difference	Between	Get	and	Post	Requests
When	requesting	a	document,	it	is	possible	for	the	web	client	(or	browser)	to	request
additional	information	or	send	information	to	the	web	server	using	either	Get	or	Post
requests.	In	a	Get	request,	data	is	appended	to	the	tail	of	a	URL	in	the	form	of	a	query
string,	like	this:
http://google.com/search?q=html5

This	URL	directly	sends	the	search	lookup	string	of	html5	to	the	Google	web	servers
by	passing	it	as	a	string	value	in	the	argument	q.	When	Google	sees	this	request,	it	knows
to	return	to	you	all	the	pages	it	thinks	are	relevant	to	the	request.	A	longer	such	request
might	look	like	the	following,	in	which	the	+	symbol	is	used	in	place	of	spaces:
http://google.com/search?q=html5+course

Here	the	search	string	html5	course	is	passed	to	Google.

In	a	Post	request,	however,	the	additional	information	is	passed	from	the	client	to	the
server	in	the	headers,	which	is	neater	as	far	as	the	user	goes,	because	it	does	not	appear	as
part	of	the	URL.	Both	get	and	post	requests	are	discussed	in	detail	later	in	this	book.

HTML	Tags
HTML	documents	are	simply	text	files	in	which	extra	tags	have	been	added	within	angle
brackets,	like	this:	<head>.	So,	for	example,	the	tag	<i>	tells	the	web	browser	that	all
following	text	should	be	displayed	using	an	italic	font.	And	when	a	</i>	is	encountered,
the	preceding	slash	(/)	character	tells	the	browser	to	disable	the	italics.	Therefore	you
frequently	find	HTML	tags	in	pairs.	For	example,	in	the	following	line	of	HTML	the	word
fox	will	appear	in	bold	face,	and	dog	in	italics:
The	fox	jumps	over	the	<i>dog</i>.

The	result	looks	like	this:
The	fox	jumps	over	the	dog.

Tag	Attributes
There	is	a	whole	lot	more	to	HTML,	though,	than	simply	markup	tags,	because	many	of
the	tags	either	support	or	require	the	use	of	attributes.	These	are	arguments	that	you	pass
alongside	the	tag	to	provide	further	information	to	the	web	browser.	Generally	an	attribute
consists	of	an	attribute	name	followed	by	the	=	sign	and	then	either	single	or	double
quotation	marks	enclosing	a	value.

For	example,	to	create	a	hyperlink	that	the	user	can	click	to	navigate	to	another
document,	you	use	the	<a>	tag	(which	stands	for	anchor),	like	this:
Visit	Google

In	a	web	browser	this	displays	simply	as:
Visit	Google

In	HTML	tags	you	can	generally	use	the	single	or	double	quotation	marks	interchangeably.	Therefore		is	equivalent	to	.	Wherever	possible,	though,	I
tend	to	use	single	quotes	because	they	don’t	require	pressing	the	Shift	key	to	type	them	in.	Also	there	are
sometimes	occasions	when	you	need	two	levels	of	nested	quotes,	where	I	would	then	choose	double	quotation
marks	for	the	outer	string,	and	then	apply	single	quotes	within	it,	like	this:	<p	style="font-family:′Times	New
Roman′;">.

In	this	element	the	href	part	(which	stands	for	hypertext	reference)	is	the	attribute
name,	and	the	string	http://google.com	is	the	attribute	value.	The	content	between	the
opening	and	closing	parts	of	this	tag	is	the	text	Visit	Google,	which	is	simply	displayed,
and	if	default	styling	is	applied,	it	will	be	shown	in	underlined	blue	(although	this	is	easy
to	change	with	HTML	or	CSS—there’s	more	on	this	later	in	the	book).	The	final	
closes	the	tag,	ready	for	displaying	in	the	browser.

There	are	several	different	types	of	attributes	available,	with	different	tags	supporting
different	attributes,	but	to	give	you	an	overview,	here	are	some	of	the	more	common	ones
you	will	encounter	and	use:

•			id	This	attribute	is	used	to	give	a	name	to	the	object	referred	to	by	the	tag	so	that
it	can	be	accessed	using	Cascading	Style	Sheets	(CSS)	or	JavaScript.	For	example,
<h1	id=′Header1′>	provides	the	name	or	id	of	Header1	to	the	<h1>	tag.	Nothing
happens	to	the	contents	of	the	tag	(also	known	as	an	object)	unless	either	CSS	or
JavaScript	acts	upon	it	to,	for	example,	apply	a	particular	font	styling.

•			class	This	attribute	lets	you	supply	a	group	name	that	may	apply	to	this	and
other	objects.	For	example	<p	class=′indent′>	applies	the	class	name	indent	to	the
<p>	tag,	which	might	be	used	by	a	style	sheet	(with	a	suitable	rule)	to	indent	the	first
line	of	all	objects	using	it.

•			style	This	attribute	lets	you	apply	a	CSS	style	to	an	object	by	putting	it	within
the	quotation	marks.	For	example,	to	apply	the	Arial	font	to	a	paragraph	object,	you
could	use	the	style	attribute	like	this:	<p	style=′font-family:Arial′>.

•			title	Any	HTML	element	may	be	given	a	title,	which	most	browsers	will	use	to

display	as	a	tooltip	when	the	mouse	passes	over	it.	For	example,	the	following	anchor
displays	a	tooltip	when	the	mouse	passes	over	it:	<a	href=′/′	title=′Go	to	the
Home	page′>.

CSS	stands	for	Cascading	Style	Sheets,	a	way	to	separate	styling	from	the	textual	content	of	a	web	page,	and
JavaScript	is	a	language	used	within	the	browser	to	achieve	dynamic	effects.	Both	of	these	are	beyond	the	scope
of	this	book,	although	occasionally	snippets	of	their	use	may	appear	within	it.	For	further	information	on	all
aspects	of	web	development,	I	recommend	my	other	books	in	the	20	Lessons	to	Successful	Web	Development
series	on	CSS	&	CSS3,	JavaScript,	and	PHP.

Summary
Now	that	you	understand	the	basics	of	what	HTML	is	about,	in	the	next	lesson	I’ll
introduce	the	different	parts	of	an	HTML	document	and	their	associated	tags,	such	as	the
<html>,	<head>,	and	<body>	sections.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			What	does	the	acronym	HTML	stand	for?

2.			What	is	the	difference	between	a	web	browser	and	a	web	server?

3.			What	does	the	acronym	HTTP	stand	for?

4.			What	does	a	web	proxy	do?

5.			What	file	extension	is	often	used	by	HTML	documents?

6.			What	is	a	404	page	more	commonly	known	as?

7.			What	is	the	difference	between	an	IP	address	and	a	domain	name?

8.			What	is	a	query	string?

9.			What	is	an	HTML	tag?

10.			What	is	a	tag	attribute?

D

The	Layout	of	an	HTML	Document

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

on’t	worry	too	much	if	Lesson	1	has	left	you	scratching	your	head.	If	any	of	it	is
unclear	right	now,	you	will	soon	understand	it	as	I	take	you	section	by	section

through	a	typical	HTML	document,	and	show	you	how	it	is	laid	out.	If	you’ve	never	used
HTML	before,	I	think	you’ll	be	pleasantly	surprised	because	it’s	actually	very
straightforward.

In	this	lesson,	I	explain	the	different	parts	of	an	HTML	document	such	as	the
<!DOCTYPE>,	headers,	scripts,	CSS,	meta	tags,	and	the	body.	You	will	gain	an
understanding	of	how	a	document	is	put	together	and	the	things	it	may	contain.

The	examples	from	this	and	all	the	lessons	in	this	book	are	freely	downloadable	at	20lessons.com.

The	<!DOCTYPE>	Declaration
All	well-formatted	HTML	pages	begin	with	a	line	that	tells	the	browser	information	about
the	type	of	content	to	expect.	This	line	consists	of	the	<!DOCTYPE>	declaration,	along	with
some	arguments	if	the	version	of	HTML	used	is	less	than	5.	There	are	a	number	of
different	arguments	available	for	this	declaration,	which	are	listed	at	doctype.org	and	fully
explained	at	wikipedia.org/wiki/Doctype.	For	example,	a	typical	HTML	4	document	will
begin	with	the	following	line,	which	declares	the	document	to	be	an	HTML	4.01
transitional	document:

The	tag	can	be	spread	over	more	than	one	line	if	it	would	wrap	around	in	your	HTML
editor,	as	shown	in	the	example.	In	HTML5	documents,	the	declaration	has	been
simplified	so	that	you	only	need	to	use	the	following	line:
<!DOCTYPE	html>

You	are	unlikely	to	need	or	very	often	see	the	former	declaration	because	all	the	latest
versions	(and	some	older	ones	too)	of	all	major	browsers	will	render	pages	either	in
standards	mode	if	they	do	not	support	HTML5,	or	using	HTML5	styling	if	they	do.	Either
way,	you	can	probably	ignore	older-style	<!DOCTYPE>	declarations	except	when	working
with	legacy	pages	that	have	not	been	updated.

http://www.mhprofessional.com/nixonhtml5
http://www.20lessons.com

Internet	Explorer	Tweak	for	Local	Documents
Because	Microsoft’s	Internet	Explorer	places	local	documents	in	a	trusted	security	zone,
when	you	open	a	web	page	containing	any	active	content	such	as	JavaScript,	you	have	to
click	a	couple	of	different	things	to	confirm	that	you	wish	to	grant	the	web	page	access	to
your	computer.

Obviously	this	is	quite	annoying	when	you	are	simply	testing	a	document	prior	to
uploading	it	to	the	Internet	or	using	it	in	an	app.	Fortunately,	there’s	a	simple	solution,
which	is	to	tell	IE	that	the	document	was	saved	from	the	Internet	(even	though	it	wasn’t),
so	that	it	then	automatically	assigns	the	correct	security	restrictions	without	being
prompted.	Therefore,	you	can	add	the	following	IE-only	tag	after	the	<!DOCTYPE>	line	if
you	will	be	accessing	local	documents	using	IE:
<!--	saved	from	url=(0014)about:internet	-->

Don’t	worry	about	leaving	it	in	your	documents	because	it	is	within	comment	tags
(see	the	“Inserting	Comments”	section	in	Lesson	3),	and	so	all	browsers	other	than	IE	will
ignore	this	line.	You	can	even	leave	it	in	place	when	you	upload	documents	to	the	Web,
because	that	is	the	same	restricted	zone	that	the	command	is	setting	anyway.	But,	of
course,	if	you	won’t	be	using	any	active	content	in	your	web	pages	(such	as	JavaScript),	or
using	the	Internet	Explorer	browser,	it	can	be	omitted.

The	<html>	Tag
This	tag	notifies	the	web	browser	that	a	section	of	HTML	follows.	The	end	of	the	section
should	be	noted	with	a	matching	</html>	tag	to	indicate	closure.	Any	content	outside	of
these	tags	will	be	treated	simply	as	text	by	most	browsers	unless	it	is	within	other	tags	or
comments	(explained	in	Lesson	3).

Many	browsers	are	forgiving	and	do	their	best	to	display	a	page	well,	even	with	missing	or	misplaced	<html>
or	other	tags.	But	it’s	best	to	get	things	in	the	right	order	to	ensure	that	all	browsers	display	your	content	properly.

Within	a	pair	of	<html>	tags,	there	are	generally	two	other	tags	used	to	contain	the
header	and	body	text	of	the	document.	These	are	<head>	and	<body>.

The	<head>	Tag
The	<head>	tag	indicates	that	the	HTML	within	it	and	its	closing	</head>	tag	contains
further	information	about	the	document	such	as	its	title,	metadata,	style	sheets,	and
JavaScript.	At	its	simplest	the	head	section	of	an	HTML	document	may	look	like	this:

Creating	a	Document	Title
As	you	saw	in	the	previous	example,	setting	the	title	of	your	document	is	as	easy	as
enclosing	it	within	a	pair	of	<title>	and	</title>	tags.	The	title	will	appear	at	the	top	of
the	browser	in	the	title	bar	and	will	be	used	by	search	engines	such	as	Google	for	indexing
your	website.	Therefore,	make	sure	the	title	is	clear,	precise,	succinct,	and	contains
relevant	keywords	to	the	page’s	contents.	Therefore,	if	your	website	is	about	right-handed
widgets	(for	example),	a	better	title	might	be	something	like	this:

Using	phrases	such	as	“Welcome	to…”	was	great	in	the	1990s	when	the	Internet	was	new	and	there	were	few
websites.	But	in	the	modern	age	when	a	user	might	browse	dozens	of	sites	in	a	single	session,	these	phrases	are
superfluous	“noise”	that	most	people	ignore.	In	my	view	it’s	far	better	to	get	down	to	the	point	immediately,
before	the	user	surfs	off	to	a	competitor’s	site.

Including	Style	Sheets
Cascading	Style	Sheets	(CSS)	are	not	really	covered	in	this	course,	but	you	need	to	know
about	them.	If	you	don’t	already	know,	they	are	sets	of	rules	used	to	describe	the	layout
and	presentation	of	an	HTML	document,	which	are	kept	separately	from	the	content.	This
is	done	to	free	the	content	from	its	layout	and	presentation	so	that	different	designs	can
easily	be	swapped	in	according	to	need.	For	example,	a	web	page	can	be	restyled	with
basic	CSS	to	make	it	more	suitable	for	printing,	and	some	CSS	rules	can	be	used	to	help
page	readers	read	out	a	web	page	to	visually	impaired	people.

More	than	that,	you	can	change	the	entire	look	and	feel	of	a	website	by	altering	a	few
simple	CSS	rules;	something	that	is	very	time-consuming	to	accomplish	if	the	styling	is
embedded	within	the	web	page’s	contents.

There	are	different	ways	of	incorporating	CSS	rules	in	a	document,	including
embedding	them	within	the	text,	or	as	a	set	of	rules	within	the	<head>	section	of	an	HTML
document	using	<style>	and	</style>	tags,	like	the	following	(which	tells	the	browser	to
display	all	Level	1	headings—explained	later—in	red):

Or,	by	saving	all	the	CSS	rules	in	a	separate	document,	you	can	simply	include	a
single	line	in	the	<head>	of	a	document	to	include	them.	The	latter	is	the	preferred	method
of	most	developers,	and	you	perform	it	using	the	<link>	tag,	like	this:
<link	rel=′stylesheet′	href=′styles.css′	type=′text/css′>

Since	this	book	only	uses	a	little	CSS	in	passing,	it	will	not	be	discussed	in	further	detail,	but	you	may	be
interested	in	reading	my	book	CSS	&	CSS3:	20	Lessons	to	Successful	Web	Development,	for	a	comprehensive
introduction.

Incorporating	JavaScript
This	course	is	also	not	about	JavaScript,	although	some	elements	of	HTML5	require	the
use	of	JavaScript.	Generally	JavaScript	is	included	within	a	web	page	by	either	including	a
section	within	<script>	and	</script>	tags,	or	by	adding	an	src	attribute	to	the
<script>	tag	to	load	in	an	external	file.

For	example,	the	following	HTML	specifies	a	script	that	is	embedded	within
<script>	tags	(the	result	of	running	this	code	is	shown	in	Figure	2-1):

FIGURE	2-1	A	JavaScript	alert	window

Like	all	JavaScript,	the	preceding	example	can	be	placed	almost	anywhere	within	an
HTML	document,	but	you	will	most	often	find	scripts	in	the	<head>	section	of	web	pages,
so	that	they	load	in	and	execute	before	the	body	of	a	document.	If	scripts	are	longer	than	a
few	lines,	they	will	often	be	saved	as	external	files	that	are	then	loaded	in	as	follows:
<script	src=′ProgramCode.js′></script>

The	file	ProgramCode.js	is	then	loaded	in	from	the	current	folder	and	its	contents	are
executed	as	if	all	its	commands	were	contained	within	the	<script>	tags.	However,	the
JavaScript	examples	in	this	course	are	short	and	for	ease	of	comprehension	are	always
inserted	alongside	the	HTML	elements	upon	which	they	act.

JavaScript	<script>	tags	allow	you	to	specify	the	type	of	script	as	being	JavaScript
(for	example:	<script	type=′text/javascript′>),	but	all	major	browsers	allow	you	to
omit	this	and	I	generally	do	so	to	save	on	typing.	However,	if	you	find	yourself	with	a
strict	program	editor	or	your	programming	styles	at	your	company	require	it,	then	you’ll
need	to	use	the	full	string,	as	you	should	when	writing	HTML4	documents,	for	which	the
type	attribute	is	required.

You	may	also	see	instances	of	<script	language=′javascript′>	if	you	view	the
source	of	some	websites,	but	this	was	deprecated	in	HTML4	and	is	now	obsolete	in
HTML5,	and	should	not	be	used.

Passing	Metadata
It	is	possible	to	provide	additional	information	to	an	HTML	document	that	the	browser
can	use	(if	it	understands	it).	Such	data	is	sent	using	the	<meta>	tag.	For	example,	you	can
tell	a	browser	to	exchange	the	current	page	for	another	one	after	a	set	length	of	time,	like
this:
<meta	http-equiv=′refresh′content=′10;url=http://othersite.com′>

This	meta	command	uses	the	http-equiv	attribute	with	the	value	of	refresh	to	tell
the	browser	that	a	refresh	is	being	requested.	The	content	attribute	has	the	value	10;
url=http://othersite.com,	which	states	that	after	10	seconds	the	web	page	at
http://othersite.com	should	replace	the	current	one.	Note	that	this	is	an	empty	tag	(known
as	a	void	element)	that	contains	no	content	and	does	not	make	use	of	a	</meta>	tag	to
close	it.

Other	uses	of	the	<meta>	tag	include	setting	the	width	of	the	document	for	portable
browsing	hardware	such	as	phones	and	tablets.	This	is	done	using	the	viewport	value,	and
a	common	width	you	see	used	is	960	pixels.	However,	such	documents	are	not	restricted
to	only	devices	of	at	least	that	width	because	all	this	setting	does	is	say	how	many	pixels
of	width	your	document	uses.	Devices	of	differing	resolutions	will	then	render	at	that
width	but	then	zoom	in	or	out,	or	rescale	as	necessary	to	enable	your	pages	to	display	at
their	best.

So,	for	example,	to	specify	a	document	width	of	960	pixels,	you	might	use	the
following	tag:
<meta	name=′viewport′	content=′width=960′>

With	both	these	tags	applied,	a	head	section	of	HTML	might	look	like	this:

However,	as	a	beginner,	on	the	whole	you	will	probably	mostly	use	only	the	<title>
tag	in	the	<head>	section	until	you	become	more	proficient	at	HTML,	with	the	possible
exception	of	two	other	versions	of	the	<meta>	tag	for	declaring	keywords	and	a
description	for	a	web	page,	like	this:

These	used	to	be	very	important	for	search	engine	ranking,	and	while	less	so	these
days	due	to	smarter	web	crawlers,	they	are	used	by	some	search	engines	and	indexers,	and
may	be	worth	including	on	your	web	pages.

http://http-equiv=′refresh′content=′10;url=http://othersite.com
http://othersite.com
http://othersite.com

The	<meta>	tag	is	an	unusual	use	of	HTML	(particularly	for	newcomers)	but	you	need	to	be	aware	of	it	even
if	you	don’t	use	it,	as	it	often	crops	up	containing	a	variety	of	different	metadata.

The	<body>	Tag
You	place	the	contents	of	an	HTML	document	inside	a	pair	of	<body>	and	</body>	tags.
Web	browsers	then	know	to	display	everything	they	find	in	there,	and	the	HTML	you	need
can	be	as	simple	as	this:

As	you	will	learn	in	Lesson	3,	there	are	dozens	of	tags	you	can	use	within	the	body	of
a	document,	but	by	default	you	can	simply	place	some	text	and	it	will	be	displayed	in	your
browser’s	default	text	font	and	size.

Summary
When	all	the	parts	I	have	described	so	far	are	brought	together,	including	only	the
document’s	title	in	the	<head>	(without	JavaScript	or	metadata,	and	so	on),	a	basic	HTML
document	might	look	something	like	this:

As	you	can	see,	it’s	quite	simple	really	and	nothing	to	be	frightened	of.	Each	section,
such	as	<head>	or	<body>,	is	closed	with	a	matching	</head>	or	</body>	tag,	and	the
enclosing	<html>	tag	is	closed	right	at	the	document	end	with	a	</html>	tag.

In	the	following	lesson	I’ll	delve	more	deeply	into	the	<body>	tag	and	show	you	how
to	use	the	various	tags	it	supports.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			What	declaration	should	appear	right	at	the	start	of	every	HTML5	document?

2.			Which	tag	is	used	to	specify	that	it	contains	HTML	contents?

3.			What	is	the	purpose	of	the	<head>	tag?

4.			How	do	you	title	a	document?

5.			Where	in	an	HTML	document	should	the	<title>	tag	appear?

6.			How	do	you	denote	the	body	of	an	HTML	document?

7.			Where	is	the	place	to	put	CSS	(Cascading	Style	Sheet)	rules?

8.			How	else	can	you	include	a	style	sheet	in	an	HTML	document?

9.			How	do	you	embed	JavaScript	into	an	HTML	document?

10.			How	can	you	run	an	external	JavaScript	file	from	an	HTML	document?

H

The	HTML	Document	Body

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

aving	introduced	you	to	HTML	and	explained	the	different	sections	it	requires,	in	this
lesson	I	start	to	look	more	closely	at	the	body	section	of	an	HTML	document,	which

resides	within	<body>	and	</body>	tags.

The	<body>	section	of	HTML	is	where	you	place	all	the	elements	that	the	web
browser	should	display.	At	its	simplest	you	can	place	plain	text	in	this	section	and	the
browser	will	display	it	for	you.	However,	no	matter	how	many	spaces,	paragraph	returns,
or	other	characters	you	place	within	this	text,	browsers	will	ignore	them	and	just	display
the	text	in	one	long	string.	So	let’s	look	at	how	you	can	format	this	text	to	start	making	it
look	much	more	interesting.

Inserting	Comments
To	start	with,	let’s	kick	off	with	comments,	probably	the	simplest	type	of	HTML
formatting,	and	something	you	place	in	a	document	to	be	seen	only	in	the	source,	and
which	is	not	displayed	by	the	browser.	To	do	this	you	place	your	comment	between	the
opening	<!--	and	closing	-->	markers	or	tags.

Comments	are	useful	for	detailing	the	author	of	a	document	and	explaining	how	a
document	develops.	To	allow	this,	comments	may	be	as	long	as	you	like	and	include	as
many	lines	as	you	wish.	They	close	only	when	the	-->	tag	is	encountered,	so	the	following
is	an	example	of	a	legal	comment	string:

You	can	also	use	comments	to	temporarily	remove	sections	of	HTML	that	you	don’t
want	to	display,	perhaps	because	you	are	highly	organized	and	have	written	something	in
advance	of	a	product	release,	so	that	you	only	need	to	uncomment	it	on	release	day.
Comments	are	also	useful	for	hiding	sections	from	displaying	so	you	can	concentrate	on
debugging	only	those	sections	that	you	may	be	having	a	problem	with.

Although	I	have	waited	until	this	lesson	to	discuss	comments,	you	should	know	that	you	can	apply	them	to

http://www.mhprofessional.com/nixonhtml5

any	section	of	HTML,	not	just	the	body	of	a	document.	This	means	you	can	comment	out	sections	in	the	head	or
even	an	entire	<html>	…	</html>	section	if	you	wish.	Also,	you	should	remember	that	comments	may	not
contain	pairs	of	hyphen	characters	within	them,	nor	can	they	end	with	a	hyphen,	as	this	may	confuse	the
browser’s	HTML	parser.

The	HTML	4.01	Tags
HTML	4.01	(HTML4	for	short)	supports	almost	100	different	elements	(also	called	tags),
but	since	this	is	a	book	on	HTML5,	I	will	not	go	into	all	of	them	in	detail.	Rather,	in	this
lesson	I	concentrate	on	some	of	the	different	types	of	HTML4	tags	and	how	you	use	them,
and	then	briefly	list	the	less	frequently	used	ones	and	the	attributes	they	have.

This	includes	various	text	formatting	tags,	for	headings,	paragraphs,	text	emphasis,
and	lists.	Then	there	are	the	tags	for	changing	text	and	background	colors	and	font	faces,
as	well	as	tags	for	embedding	media	such	as	images,	creating	hyperlinks,	building	tables
and	forms,	and	much	more.	So	you	will	get	a	good	grounding	in	HTML4	before	moving
on	to	the	new	features	in	HTML5.

The	<div>	and		Tags
The	<div>	and		tags	were	created	to	help	with	combining	elements	into	groups.
Their	main	purpose	is	to	enable	the	contained	elements	to	be	manipulated	as	a	group	from
style	sheets.	The	<div>	tag	creates	what	is	called	a	block	element	in	that	by	default	its
width	stretches	all	the	way	to	the	browser’s	right-hand	edge,	forcing	any	following
elements	onto	the	next	line.	Therefore	all	<div>	elements	have	four	sides	and	are
rectangular.

On	the	other	hand,	the		tag	creates	an	inline	element	that	flows	with	the	text,
and	it	is	therefore	particularly	suited	for	applying	styles	to	sections	of	text.	Although	this
book	doesn’t	teach	CSS,	style	sheets	are	inextricably	entwined	with	HTML	and	so,	from
time	to	time,	I	may	employ	either	<div>	or		tags	with	suitable	CSS	styling	where
standard	HTML	does	not	provide	the	solution	required.

You	use	the	tags	as	follows:

The	main	practical	difference	between	the	two	that	you	will	usually	notice	is	that
<div>	elements	by	default	force	a	line	break	before	and	after	them,	whereas	
elements	do	not.	You	will	see	how	to	add	CSS	styles	to	them	in	the	“Text	Emphasis”
section,	a	little	further	on.

Simply	think	of	each	of	these	two	types	of	elements	as	invisible	containers	in	which	text	and/or	other
elements	are	placed,	and	which	can	be	styled	with	CSS.	Remember	that	<div>	elements	are	rectangular,	while
	elements	go	with	the	flow	of	text,	line	by	line	along	and	down	the	screen.

Headings
Let’s	now	look	at	some	of	the	commonly	used	tags,	those	for	formatting	text,	starting	with
headings.	To	specify	headings	in	HTML	documents,	you	must	enclose	them	in	any	one	of
six	different	pairs	of	tags,	from	<h1>	to	<h6>,	and	their	counterpart	closing	tags	</h1>	to
</h6>.	The	<h1>	heading	is	the	largest,	and	<h6>	is	the	smallest.	Headings	are	also
generally	formatted	in	bold	to	help	them	stand	out	from	the	body	even	more.

Here	are	examples	of	each	heading	type,	and	the	result	of	using	them	is	shown	in
Figure	3-1:

FIGURE	3-1	The	six	types	of	HTML	headings

Interestingly,	the	fifth-	and	sixth-level	headings	are	by	default	displayed	smaller	than	standard	body	text.
However,	most	writers	will	agree	that	if	you	need	to	go	any	deeper	than	four	levels,	you	are	probably
overcomplicating	the	subject	and	should	consider	reworking	your	content.	For	this	and	the	previously	mentioned
reason	of	small	size,	I	rarely	use	<h5>	and	<h6>.

Once	you	have	split	a	web	document	with	suitable	headings	inserted	in	appropriate
places	using	these	tags,	it	is	much	easier	for	your	readers	to	comprehend	and	quickly	read
it.	This	is	because	it	is	easier	on	the	eye	with	more	whitespace,	and	each	separate	topic	has

its	own	heading,	making	it	easier	to	focus	in	on	what	interests	the	reader.

Paragraphs
Each	of	your	paragraphs	should	be	enclosed	within	<p>	and	</p>	tags	so	that	web
browsers	know	how	to	handle	them.	By	default	it	will	ensure	the	correct	spacing	between
each	paragraph	and,	with	the	addition	of	CSS,	you	can	further	modify	styling	by,	for
example,	indenting	the	first	line	of	each,	or	by	choosing	ragged	or	full	justification,	and	so
on.

Here	is	an	example	of	a	simple	paragraph	taken	from	Matthew	7:7-8	in	the	Bible	(I
prefer	to	use	the	Bible,	Shakespeare,	Dickens,	and	so	on,	rather	than	using	Lorem	Ipsum
text),	and	formatted	as	an	HTML	paragraph:

This	paragraph	will	display	as	a	single	line	that	wraps	around	only	when	the	text
encounters	the	edge	of	its	containing	element.	So,	for	example,	it	might	display	like	the
following	ragged	justified	text:

Line	Breaks
What	a	line	break	does	is	interrupt	the	default	flow	of	text	from	left	to	right	and	then	down
to	the	next	line	(or	right	to	left	if	that	option	has	been	enabled,	either	with	CSS	or	by
modifying	the	<html>	tag	like	this:	<html	dir=′rtl′>),	so	that	the	next	element	displayed
is	forced	to	the	start	of	the	next	line.	Sometimes	you	have	a	reason	for	sending	a	line	break
to	the	browser	before	the	end	of	a	paragraph.	This	is	done	using	the	
	tag	which,	you
will	notice,	is	empty	(void)	and	has	no	end	tag.

Even	though	in	HTML5	the	value	supplied	to	dir	can	be	either	uppercase	(for	example	RTL)	or	lowercase	(for
example	rtl),	because	XHTML	doesn’t	support	uppercase,	you	should	stick	with	the	lowercase	style	so	that	your
content	can	be	easily	repurposed	as	XHTML	(such	as	in	an	RSS	feed).

So,	if	you	need	to	make	sure	some	text	(or	any	sequence	of	HTML	elements)	displays
exactly	the	way	you	want,	you	can	force	its	formatting,	for	example,	as	with	the	following
reformatting	of	the	quotation	from	Matthew:

This	HTML	will	display	as	follows—as	long	as	its	containing	element	is	wide
enough:

Whatever	is	next	in	your	HTML	to	be	displayed,	whether	an	image,	a	video,	or	some
text,	the	
	will	always	force	it	down	to	continue	on	the	next	line.	There	is	also	a	special
case	of	this	tag,	which	is	used	to	clear	any	temporary	left	or	right	alignment.	For	example,
it	is	possible	to	display	an	image	with	left	alignment	so	that	text	flows	down	along	its
right-hand	side	(there’s	more	on	how	to	do	this	later	in	the	section	“Displaying	Images”	in
Lesson	4).	But	if	you	have	insufficient	text	to	fill	in	all	the	space	to	the	right	of	the	picture
before	the	next	paragraph	or	heading,	then	that	would	also	appear	beside	it.

In	such	cases	you	can	use	the	
	tag	to	clear	any	alignment	and	force	further	text	(or
other	elements)	to	appear	not	just	down	a	line,	but	under	the	image	or	other	object	around
which	the	text	has	been	flowing.	There	are	three	versions	of	the	tag	to	do	this,	for	clearing
left	alignment,	right	alignment,	and	all	alignments	respectively,	as	follows:

The	clear	attribute	is	not	part	of	HTML5	(even	though	your	browser	may	still	support	it),	and	so	you	are
recommended	to	create	this	type	of	alignment	using	CSS	instead,	since	there	is	a	good	chance	that	this	attribute
will	stop	working	sometime	soon.

Text	Emphasis
There	are	many	different	ways	you	can	change	the	emphasis	of	text	in	HTML,	each	with
an	accompanying	tag.	For	example	you	can	bold,	italicize,	underline,	and	strike	through
text,	and	you	can	also	display	text	in	superscript	or	subscript.

Following	are	the	most	common	HTML	tags	you	will	use	for	this,	the	results	of	using
which	you	can	see	in	Figure	3-2.	Some	of	these	tags	are	obsolete	in	HTML5,	which	means
that	they	have	been	removed	from	HTML5.	However,	the	practicality	of	billions	of	web

pages	already	employing	them	means	that	support	for	them	in	browsers	is	unlikely	to	end,
otherwise	too	many	websites	would	break.	Even	so,	you	should	avoid	using	obsolete
elements	in	new	documents.

FIGURE	3-2	The	text	emphasis	tags	and	how	they	display

…

Text	within	these	tags	will	appear	in	bold	face.	This	is	the	same	as	using	the		tag,
but	it	is	possible	to	style	this	tag	differently	than		with	CSS.	HTML5	considers
there	to	be	a	semantic	difference	between	these	tags,	though,	in	that		should	be	used
only	for	formatting	in	bold.

<big>	…	</big>	(Obsolete)

Text	within	these	tags	will	be	bigger	than	that	outside.	This	tag	is	obsolete	in	HTML5.

<center>	…	</center>	(Obsolete)
Text	within	these	tags	will	appear	centered.	However,	these	tags	are	obsolete	in	HTML5
and	you	are	recommended	to	use	CSS	in	their	place.	Note	how	in	Figure	3-2	you	can	see
that	by	using	this	tag,	if	the	text	within	it	is	not	already	at	the	start	of	a	line,	then	a	line
break	will	automatically	be	issued	first.	A	line	break	is	also	issued	after	closing	this	tag,	so
beware	of	adding	one	yourself,	which	would	result	in	a	double	line	break.

	…	

Text	within	these	tags	will	appear	with	a	strikethrough	line	through	it.	This	is	the	same	as
using	the	<s>	and	<strike>	tags	(although	<strike>	is	obsolete	in	HTML5).	It	is	possible
to	style	this	tag	differently	than	<s>	and	<strike>	with	CSS.	In	HTML5		represents

a	removal	from	the	document.

	…	

Normally	text	within	these	tags	is	displayed	in	italics,	and	so	it	is	the	same	as	using	<i>,
but	it	is	possible	to	style	this	tag	differently	than	<i>	using	CSS.	In	HTML5,		is	meant
for	adding	emphasis	to	text	(it	just	happens	to	italicize	by	default).

<i>	…	</i>

Text	within	these	tags	will	appear	in	italics.	This	is	the	same	as	using	the		tag,	but	it	is
possible	to	style	this	tag	differently	than		with	CSS.	The	<i>	tag	should	be	used	only
for	italicizing	in	HTML5.

<s>	…	</s>

Text	within	these	tags	will	appear	with	a	strikethrough	line	through	it.	These	tags	were
deprecated	in	HTML4	but	restored	in	HTML5,	and	are	the	same	as	using	<strike>	(which
is	now	obsolete	in	HTML5).	The	<s>	tag	is	similar	to	the		tag,	but	in	HTML5	it	is
intended	for	indicating	something	that	is	no	longer	accurate	or	relevant.

<small>	…	</small>

Text	within	these	tags	will	be	shown	smaller	than	that	outside.

<strike>	…	</strike>	(Obsolete)
The	same	as	<s>,	although	it	is	obsolete	in	HTML5,	and	so	either	<s>	or		is
recommended	instead.	It	is	possible	to	style	this	tag	differently	than	<s>	and		using
CSS.

	…	

Normally	text	within	these	tags	is	displayed	in	bold	face,	and	so	it	is	the	same	as	using
,	but	it	is	possible	to	style	this	tag	differently	than		using	CSS.	In	HTML5	
is	intended	for	text	that	is	especially	important,	such	as	a	key	point	to	learn.

_…

Text	within	these	tags	will	appear	subscripted.

[…]

Text	within	these	tags	will	appear	superscripted.

<u>	…	</u>

Text	within	these	tags	will	appear	underlined.	This	tag	was	deprecated	in	HTML4	but
restored	in	HTML5,	and	is	intended	to	represent	text	that	should	be	stylistically	different
from	normal	text,	such	as	misspelled	words.

When	you	wish	to	create	emphasis,	it	is	often	best	to	use	CSS.	One	way	is	to	add	the

CSS	inline,	as	with	the	following	example,	which	creates	italic	and	strikethrough	text:

An	even	better	way	is	to	separate	the	styling	from	the	content	by	creating	a	class
containing	a	rule,	and	then	applying	the	class.	Doing	so	in	detail	is	beyond	the	scope	of
this	book,	but	the	following	snippet	shows	one	way	of	doing	this	using	a	period	symbol	in
front	of	the	class	names	in	the	<style>	section:

Figure	3-3	shows	the	preceding	example	being	displayed	in	a	web	browser.

FIGURE	3-3	Using	CSS	to	create	text	emphasis

Summary
Armed	with	the	tags	you	have	learned	so	far,	you	can	already	create	some	quite	impressive
HTML	documents,	but	in	the	following	lesson	I	add	even	more	tools	to	your	kit	by
showing	how	to	change	font	face	and	color,	and	embed	images	in	your	documents.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			How	can	you	place	a	comment	in	an	HTML	document?

2.			What	is	the	difference	between	a	<div>	and	a		element?

3.			What	are	the	six	pairs	of	tags	you	can	use	to	create	different	levels	of
headings?

4.			Which	tags	do	you	use	to	denote	the	start	and	end	of	a	paragraph?

5.			How	can	you	issue	a	line	break	in	an	HTML	document?

6.			How	can	you	format	HTML	text	in	bold	without	using	CSS?

7.			Which	HTML	tag	can	be	used	for	displaying	italic	text?

8.			What	is	one	way	to	display	text	in	italics	with	CSS?

9.			How	can	you	make	an	element	display	as	line-through	using	CSS?

10.			What	does	the	term	deprecated	mean?

S

Fonts,	Colors,	and	Images

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

o	far	you	have	learned	about	the	structure	of	an	HTML	document,	and	how	to	format
and	emphasize	text	to	present	it	well.

In	this	lesson,	I	show	you	how	to	change	the	font	face	and	size	of	any	text,	as	well	as
how	to	add	coloring	to	the	text	foreground	or	background,	and	how	to	load	and	display
images	in	a	document,	including	on-the-fly	resizing.

Changing	Font	Face	and	Color
Even	without	using	CSS,	there	are	many	ways	you	can	use	HTML	to	change	the	way	a
font	displays	by	passing	different	attributes	to	the		tag.	However,	the	use	of	this	tag
(and	another	called	<basefont>)	has	been	deprecated	in	HTML4	and	made	obsolete	in
HTML5.	This	means	that	at	some	time	in	the	future	they	could	be	removed	entirely	from
HTML,	but	I	seriously	doubt	this	will	ever	happen	since	they	are	so	widely	used	on
billions	of	pages	worldwide,	which	would	all	break	if	this	happened.	Nevertheless,	you
should	avoid	using	them	on	any	new	web	pages.

It’s	true	that	CSS	is	a	better	way	to	manage	colors,	but	this	is	a	book	on	HTML,	and
so	I	will	show	you	what	you	can	achieve	with	it.	Once	you’ve	mastered	HTML,	though,	I
strongly	advise	you	to	learn	CSS	if	you	haven’t	already.

Anyway,	let’s	start	off	this	lesson	with	the		tag.

	…	

The	color	of	the	text	is	changed	to	the	value	in	the	quotation	marks.	This	value	may	be	a
color	name	(see	the	following	section,	“The	Named	Colors”)	or	a	color	number	(see	the
“Coloring	by	Numbers”	section).	For	example:
This	is	red	text

	…	

The	font	face	of	the	text	is	changed	to	the	value	in	the	quotation	marks.	This	value	should
be	the	name	of	a	font	available	to	the	browser.	If	the	font	is	not	found,	a	replacement	will
be	selected.	For	example:
This	text	is	in	the	Arial	font

http://www.mhprofessional.com/nixonhtml5

	…	

The	font	size	of	the	text	is	changed	to	the	value	in	the	quotation	marks.	This	should	be	a
value	between	1	and	7	(from	smallest	to	largest	size	font,	with	a	default	of	3).	The	value
may	be	preceded	with	a	+	or	–	symbol	to	indicate	a	relative	rather	than	absolute	change	of
size.	For	example:
This	is	font	size	5

You	may	combine	any	or	all	of	the	color,	face,	and	size	attributes	in	a	single	
tag,	for	example,	like	this:

<basefont>

Additionally	you	can	use	the	global	tag	<basefont>,	which	has	the	same	attributes	as	the
	tag	but	is	used	to	change	the	default	font	values	for	an	entire	document.	In
particular,	if	the	size	is	changed,	then	any	use	of	the		tag	with	+	or	–	values	will
change	the	font’s	size	relative	to	the	value	specified	for	the	basefont.

Headings	are	not	affected	by	the	<basefont>	tag,	and	on	some	browsers,	tables	do	not	use	this	tag’s	values
either.

<body	bgcolor=′…′>

You	can	change	the	default	background	color	of	a	web	page	by	specifying	your	choice	of
color	as	an	attribute	to	the	<body>	tag,	like	this,	which	sets	it	to	cyan:
<body	bgcolor=′cyan′>

The	Named	Colors
All	browsers	support	16	main	color	names	for	the	color	attribute	values,	including:	aqua,
black,	blue,	fuchsia,	gray,	green,	lime,	maroon,	navy,	olive,	purple,	red,	silver,
teal,	white,	and	yellow.

Modern	browsers	support	many	more	color	names	(up	to	147),	but	those	names	are
not	part	of	the	HTML	standard.	Among	other	options,	you	can	often	add	the	words	dark
or	light	before	a	color	name,	but	do	check	that	all	browsers	you	intend	to	support	work
with	these	color	names.	Here	are	some	examples:

See	Table	4-1	for	the	full	list	of	color	names	supported	by	all	web	browsers	(and	their
equivalent	hex	string	values).	If	you	need	a	wider	choice	of	colors,	you	should	really	use
hexadecimal	color	numbers,	which	allow	very	precise	color	selection,	as	explained	in	the
following	section.

TABLE	4-1	The	140	cross-browser	color	names	and	their	hex	values

Coloring	by	Numbers
Instead	of	providing	color	names	to	HTML	tags,	you	can	be	much	more	precise	by	passing
numeric	values	instead.	To	do	this	you	start	with	a	#	symbol	and	follow	it	with	six
hexadecimal	numbers	consisting	of	three	pairs,	which	represent	the	primary	colors	of	red,
green,	and	blue.

For	example,	numbers	in	hexadecimal	go	from	0	through	to	F,	rather	than	the	0	to	9
we	are	used	to	in	decimal	notation.	Therefore	a	single	hexadecimal	digit	can	represent	any
of	16	different	values	(instead	of	10).	This	means	that	two	hexadecimal	digits	together	can
represent	256	values	(16	×	16,	between	00	and	FF),	and	therefore	it	is	possible	to	create	a
color	out	of	any	one	of	256	levels	of	red,	256	green,	and	256	blue—over	16	million	colors
(256	×	256	×	256).

This	is	done	by	following	the	#	symbol	with	six	hexadecimal	digits,	like	this,	for
example:	#006699,	which	indicates	a	color	consisting	of	00	red,	hexadecimal	66	(102
decimal)	of	green,	and	hexadecimal	99	(153	decimal)	of	blue.	Therefore	the	value	#000000
specifies	the	color	black	because	it	assigns	values	of	00	to	red,	00	to	green,	and	00	to	blue.
On	the	other	hand,	a	value	of	#FFFF00	specifies	the	color	yellow	because	it	assigns	values
of	FF	to	red,	FF	to	green,	and	00	to	blue	(on	a	computer,	combining	red	and	green	results	in
the	color	yellow).

For	example,	the	following	tag	changes	the	font	color	to	orange:
This	is	orange	text

You	may	use	either	the	lowercase	letters	a–f,	or	the	uppercase	A–F,	or	a	combination	in	hexadecimal	color
values.	Also,	in	some	browsers,	if	you	are	prepared	to	sacrifice	the	availability	of	over	16	million	possible	colors
for	a	more	limiting	4,000	or	so,	you	can	use	a	single	hexadecimal	digit	for	each	primary	color	in	a	value,	rather
than	two	of	them,	like	this:	#000,	or	#148.	The	former	is	the	color	black,	while	the	latter	is	shorthand	for	the	color
#114488—only	use	this	format	if	your	web	pages	won’t	be	accessed	with	Internet	Explorer.	However,	color
values	of	either	length	(three	or	six	hexadecimal	digits)	are	accepted	by	CSS	rules	(as	opposed	to	HTML)	in	all
browsers.

Font	Faces
There	are	a	number	of	fonts	available	to	a	web	browser,	depending	upon	the	availability	of
fonts	in	the	underlying	operating	system.	Therefore,	when	you	choose	a	font	name,	you
are	permitted	to	select	alternative,	or	second-best	fonts,	in	order	of	preference	so	that	a
web	page	will	degrade	gracefully	according	to	your	font	preferences.

For	example,	as	a	backup	in	cases	where	a	computer	may	not	have	the	Arial	font
installed,	you	might	choose	to	ask	the	browser	to	choose	the	best	sans-serif	font	it	can	find
by	using	the	following	syntax:

Following	is	a	list	of	all	the	main	fonts	that	are	likely	to	be	available	on	most	PCs,
Macs,	Linux	boxes	or	other	modern	computers,	along	with	one	or	more	suitable
substitutes	where	the	chosen	font	isn’t	available.	Simply	enter	the	entire	string	as	the	value
of	the	face	attribute	of	a		tag	to	select	it.

•			"Arial,	sans-serif"

•			"′Arial	Black′,	sans-serif"

•			"′Arial	Narrow′,	sans-serif"

•			"′Avant	Garde′,	sans-serif"

•			"Bookman,	′Bookman	Old	Style′,	serif"

•			"′Century	Gothic′,	sans-serif"

•			"Copperplate,	′Copperplate	Gothic	Light′,	serif"

•			"′Comic	Sans	MS′,	cursive"

•			"Courier,	monospace"

•			"′Courier	New′,	monospace"

•			"Garamond,	serif"

•			"′Gill	Sans′,	′Gill	Sans	MT′,	sans-serif"

•			"Georgia,	serif"

•			"Helvetica,	sans-serif"

•			"Impact,	fantasy"

•			"′Lucida	Grande′,	′Lucida	Sans	Unicode′,	sans-serif"

•			"′Lucida	Console′,	monospace"

•			"Palatino,	′Palatino	Linotype′,	serif"

•			"Tahoma,	sans-serif"

•			"Times,	serif"

•			"′Times	New	Roman′,	serif"

•			"Trebuchet,	sans-serif"

•			"Verdana,	sans-serif"

For	example,	for	the	Lucida	Grande	font,	enter	the	string	shown,	like	this:

Figure	4-1	shows	how	these	font	strings	display	on	a	standard	Windows	computer
using	Internet	Explorer.

FIGURE	4-1	A	selection	of	fonts	and	how	they	display	on	Windows	7	in	IE

The	single	quotation	marks	are	required	within	the	double	quotes	to	enclose	font	face	names	that	contain
spaces	in	them.

You	can	also	use	these	strings	without	the	double	quotes	(but	keeping	the	single	ones)
as	part	of	CSS	declarations	for	changing	a	font	face,	like	this:

Or,	better	still,	employ	a	CSS	class	that	you	create	in	a	separate	CSS	style	sheet	or
within	<style>	…	</style>	tags	in	the	<head>	of	your	document.	For	more	on	using
CSS,	you	may	wish	to	refer	to	my	book,	CSS	&	CSS3:	20	Lessons	to	Successful	Web
Development.

Displaying	Images
Images	are	easily	displayed	in	a	web	page	and	various	image	types	are	supported,	mainly
including	.jpg,	.gif,	and	.png.	Each	of	these	has	different	features	and	drawbacks.

For	example,	.gif	images	can	be	animated,	but	display	fewer	colors;	.jpg	images
display	more	colors	but	may	employ	a	lossy	compression	technique	that	introduces
distortions;	while	.png	images	offer	the	best	of	both	worlds,	but	can	be	larger.

You	include	an	image	in	your	HTML	using	the		tag	(note	that	this	void	tag	is
empty	and	has	no	matching		tag),	accompanied	by	one	or	more	of	the	following
attributes:

•			src	This	value	tells	the	browser	where	to	fetch	the	image	from.	If	it	is	preceded
by	the	string	http://	(or	https://	on	secure	servers),	then	the	image	will	be
downloaded	from	the	website	at	the	domain	following	the	http://.	Otherwise	the
image	is	assumed	to	be	on	the	current	website	(or	on	the	local	disc)	and	is	loaded	from
the	current	folder	there.

•			alt	Some	browsers	do	not	display	images,	or	their	display	may	have	been
disabled,	so	you	can	use	this	attribute	to	provide	alternate	text	describing	the	image.
This	is	also	useful	in	cases	where	an	image	is	slow	or	fails	to	load,	as	shown	by	the
fourth	image	in	Figure	4-2,	in	which	the	alternate	text	is	displayed	due	to	the	image
not	being	found.

•			width	and/or	height	By	default	web	browsers	will	look	up	an	image’s
dimensions	and	display	it	using	them.	But	sometimes	you	may	wish	to	display	an
image	using	a	different	width	and	height,	which	you	can	specify	using	one	or	both	of
these	attributes.	If	only	one	attribute	is	used,	the	browser	will	compute	the	other
dimension	such	that	the	image	will	stay	in	proportion.	Another	reason	to	specify	an
image’s	width	and	height	is	to	ensure	that	page	layout	is	correctly	aligned	even	before
the	image	is	loaded.	If	you	specify	these	values	in	advance,	the	browser	will	allocate
the	space	required	for	the	image	right	away.

•			border	Using	this	attribute	you	can	specify	the	width	of	border	(if	any)	to	apply
to	an	image.	It	accepts	the	value	0	or	any	positive	number.	Unless	this	setting	is
modified	by	CSS,	if	an	image	has	a	border	and	is	placed	with	an	anchor,	the	border
color	will	change	when	the	mouse	passes	over	it.	The	three	images	that	could	be
loaded	in	Figure	4-2	have	no	border,	a	one-pixel	border,	and	a	five-pixel	border
respectively.	This	attribute	is	obsolete	in	HTML5	and	CSS	is	recommended	instead.

•			align	With	this	attribute	you	can	position	an	image	vertically	by	aligning	it
within	the	current	line	using	any	of	the	values	top,	middle,	bottom,	absmiddle,	or
absbottom.	You	can	also	align	it	to	the	left	or	right	of	the	current	line	using	the	values
left	or	right.	This	attribute	is	obsolete	in	HTML5	and	CSS	is	recommended	instead.

FIGURE	4-2	Four	images	displayed	using	the		tag,	with	one	missing

The	lines	of	HTML	used	to	create	Figure	4-2	are	as	follows:

In	Lesson	3,	I	introduced	the	
	tag,	which	is	used	for	creating	a	line	break,	and
mentioned	that	it	also	had	a	secondary	purpose,	which	is	to	clear	left	or	right	alignment.
Well,	here’s	how	that	works.

Figure	4-3	shows	an	image	being	displayed	using	left	alignment	with	some	text
flowing	to	its	right.	It	was	created	with	the	following	HTML:

FIGURE	4-3	A	left-aligned	image	with	text	flowing	to	the	right

Disregarding	(for	now)	the	fact	that	the	text	butts	right	up	against	the	image,	it	also
seems	rather	messy	because	the	second	paragraph	probably	should	begin	under	the	image.
To	fix	this	the	<br	clear=′left′>	tag	is	used	(although	clear=′all′	would	also	work	in
this	instance)	prior	to	closing	the	first	paragraph,	as	follows,	with	the	result	shown	in
Figure	4-4:

FIGURE	4-4	The	left	alignment	is	cleared	before	the	start	of	the	second	paragraph.

Although	better,	this	display	could	still	do	with	a	little	more	cleaning	up,	so	in	Figure
4-5	I	have	added	a	1-pixel	border	to	the	image,	a	heading	to	the	text,	and	created	a	15-
pixel	blank	margin	to	the	right	of	the	image	using	a	CSS	declaration,	as	follows:

<h1>All	About	Islands</h1>

FIGURE	4-5	Now	a	border,	heading,	and	margin	have	been	added.

Ideally,	the	CSS	styling	should	be	removed	from	within	the	body	of	the	web	document	and	into	an	external
style	sheet	using	a	class	name,	which	can	then	be	applied	to	any	left-aligned	object.	Please	refer	to	your	favorite
CSS	book	or	website	for	full	details	on	using	CSS.

By	default,	images	will	line	up	next	to	each	other	unless	you	use	CSS	styling	or	tags
such	as	
	to	force	a	line	break,	or	<p>	to	start	a	new	paragraph.	Text	will	also	line	up
next	to	an	image,	but	starting	only	at	the	bottom-most	possible	line,	and	then	wrapping
around	to	the	next	line.	So	use	the	align	attribute	to	force	a	full	left	(or	right)	align	to
allow	text	to	flow	from	the	top-most	position.

If	you	choose	to	right-align	an	image	(or	any	element,	in	fact),	things	are	just	the
same,	except	that	text	will	flow	to	its	left,	and	you	should	use	either	the	clear=′right′	or
clear=′all′	attributes	of	the	
	tag	if	you	wish	to	turn	off	the	wrapping	prior	to
reaching	the	bottom	of	the	image.

Remember,	though,	that	the	clear	attribute	(like	align)	has	been	made	obsolete	in
HTML5	and,	even	though	it	still	works	in	all	major	browsers	(for	backward	compatibility
reasons),	you	should	learn	to	use	CSS	to	achieve	the	same	effect	for	all	new	documents—
because	one	day	deprecated	and	obsolete	attributes	may	be	removed	altogether,	which	will
break	pages	that	use	these	attributes.

Summary
Now	that	you	have	mastered	managing	fonts,	colors,	and	images,	in	the	next	lesson	I	will
turn	to	building	lists	and	tables.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			What	HTML	tag	is	used	to	manipulate	fonts?

2.			Which	attribute	affects	the	color	of	text?

3.			Which	attribute	changes	the	font	face?

4.			Which	attribute	changes	a	font’s	size?

5.			How	can	you	change	the	background	of	a	document	without	using	CSS?

6.			What	colors	do	the	following	hexadecimal	number	values	represent:
#FF0000,	#FFFFFF,	#888888?

7.			How	can	you	change	font	face	using	CSS?

8.			Which	HTML	tag	can	you	use	to	display	images?

9.			How	can	you	left-align	an	image	without	using	CSS?

10.			What	is	the	CSS	way	of	left-aligning	an	element?

B

Creating	Lists	and	Tables

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

y	now	you	should	be	really	appreciating	the	power	of	HTML,	and	we’ve	only	covered
a	subsection	of	HTML	4.01,	but	bear	with	me	if	you	are	new	to	HTML,	because	you

need	this	background	in	order	to	prepare	you	for	all	the	goodies	that	have	been	added	in
HTML5.

And	even	if	you	are	experienced	with	HTML,	it	may	still	be	a	good	idea	to	continue
browsing	through	these	early	lessons	to	give	yourself	a	quick	refresher	on	the	subject.

Building	Lists
HTML	supports	a	wide	variety	of	different	list	types,	including	bulleted,	numbered,	and
definition	lists.	Numbered	lists	are	known	as	ordered	lists,	and	list	items	can	be	denoted
with	letters	of	the	alphabet	or	roman	numerals	as	well	as	with	numbers,	and	bulleted	lists
can	use	squares,	or	filled	or	outlined	circles.

Figure	5-1	shows	every	possible	type	of	list,	all	on	a	single	web	page,	including	both
the	upper-	and	lowercase	forms	that	are	available.

FIGURE	5-1	The	eight	different	HTML	list	types

http://www.mhprofessional.com/nixonhtml5

A	typical	ordered	list	can	be	created	with	HTML,	such	as	the	following:

As	you	can	see,	lists	are	a	little	more	complex	than	the	tags	we’ve	used	so	far	because
they	consist	of	more	than	one	tag.	To	start	with	there	are	the	enclosing		and	
tags,	which	indicate	that	the	content	between	the	tags	is	a	list.	Then	each	item	of	the	list	is
itself	enclosed	in		and		tags.	The	preceding	example	displays	as	the	first	list	in
row	one	of	Figure	5-1.

An	unordered	(or	bulleted	list)	using	the	default	of	filled	circles	could	be	created	like
this	(which	displays	as	the	first	list	in	row	two	of	Figure	5-1):

Lists	may	also	contain	sublists	(and	so	on),	like	this:

In	this	example	the	sublist	of	Bramley,	Cox,	and	Golden	Delicious	will	appear	with
an	open	circle	symbol.	This	is	because	the	default	order	of	rotation	between	bullets	is
filled	circle	(the	outer	list	level),	open	circle,	filled	square,	and	then	back	to	filled	circle,
and	so	on.	In	HTML	these	three	shapes	are	referred	to	using	the	values	disc,	circle,	and
square.

Overriding	the	Defaults
You	can	obtain	greater	control	over	your	lists	by	overriding	the	default	values	and
specifying	values	of	your	own,	out	of	the	following	attributes:

•			start	By	default	ordered	lists	start	with	the	number	1	and	each	additional	item
in	the	list	is	prefaced	by	the	next	number	in	sequence,	but	you	can	choose	any	other
starting	value,	both	positive	and	negative,	or	zero.	This	attribute	is	not	used	by
unordered	lists,	which	always	display	the	same	character	before	each	item.

•			type	Ordered	lists	preface	digits	before	each	list	item	by	default,	but	you	can
change	this	behavior	to	displaying	upper-	or	lowercase	letters,	or	upper-	or	lowercase
roman	numerals	by	giving	this	attribute	a	value	of	one	of	the	following:	1,	A,	a,	I,	or	i,
respectively.	Unordered	lists	require	any	of	three	words	as	values	for	this	attribute,	out
of	disc,	square,	and	circle,	the	default	being	the	same	as	specifying	disc.	The	type
attribute	for		lists	(but	not	for		lists)	is	obsolete	in	HTML5.

So,	for	example,	to	use	the	square	bullet	(in	place	of	the	default	disc)	in	a	list,	you	can
use	HTML	such	as	this	(which	displays	as	the	second	list	in	the	bottom	row	of	Figure	5-
1):

Or,	for	example,	to	use	uppercase	roman	numerals,	you	could	use	code	such	as	this
(which	displays	as	the	fourth	list	in	the	top	row	of	Figure	5-1):

Or,	to	begin	an	ordered	list	at	a	specified	number,	you	could	use	code	like	this	(which
will	commence	numbering	from	the	digit	5,	instead	of	1):

Definition	Lists
HTML	also	supports	another	kind	of	list	known	as	a	definition	list.	This	type	of	list	is	used
in	places	where	it	is	not	appropriate	to	use	either	ordered	or	bulleted	lists,	for	example,
when	giving	definitions	of	words,	which	look	better	if	the	word	being	defined	is	used	as
the	bullet.

In	definition	lists	the	first	part	of	each	list	element	is	referred	to	as	the	term,	and	the
second	as	the	definition,	which	gives	rise	to	the	HTML	tags	of	<dl>	and	</dl>	for
enclosing	a	definition	list,	<dt>	and	</dt>	for	denoting	a	term,	and	<dd>	and	</dd>	for
denoting	the	term’s	definition,	as	shown	in	the	following	example:

This	HTML	will	display	as	follows:

Creating	Tables
HTML	tables	are	great	for	presenting	tabular	data	in	a	clear	and	concise	way	and	have	also
been	used	for	many	years	as	an	aid	to	layout,	even	though	there	are	more	efficient	ways	of
creating	good	layouts	using	CSS.	However,	for	knocking	together	a	quick	and	dirty
example,	or	for	laying	out	rows	and	columns	of	data,	tables	are	great.

You	create	a	table	using	the	<table>	and	</table>	tags,	which	support	the	following
attributes:

•			align	This	attribute	supports	values	of	left,	right,	or	center	to	align	the	table
according	to	the	surrounding	text,	although	the	attribute	is	now	deprecated	and	use	of
CSS	is	recommended	instead.

•			bgcolor	Using	this	attribute	you	can	set	the	background	color	of	a	table.
However,	CSS	is	recommended	for	this	as	the	attribute	is	now	deprecated.

•			border	With	this	attribute	you	can	specify	a	border	around	the	table	of	0	or	any
positive	number	of	pixels.

•			bordercolor	With	this	attribute	you	can	specify	the	color	of	the	border	using

standard	color	names	or	hexadecimal	number	values.

•			cellpadding	This	attribute	specifies	the	number	of	pixels	space	between	cell
walls	and	their	content,	which	can	be	a	value	of	0	or	any	higher	number.

•			cellspacing	This	attribute	specifies	the	number	of	pixels	space	between	cells
and	the	outer	table	border,	which	can	be	a	value	of	0	or	any	higher	number.

•			height	and	/	or	width	With	these	attributes	you	can	specify	the	width	and	height
of	a	table.	When	these	attributes	are	unspecified,	the	browser	will	resize	the	table	to
the	best	fit	for	its	contents.

In	HTML5	all	of	these	attributes	are	obsolete,	and	should	be	avoided	in	new	documents—use	CSS	instead.

For	example,	the	following	HTML	creates	a	table	that	is	450	pixels	wide,	200	pixels
deep,	has	a	1-pixel	border,	5	pixels	of	padding	inside	each	cell,	5	pixels	of	spacing	outside
the	cells,	and	a	background	color	of	cyan:

Table	Rows	and	Columns
Within	each	table	there	must	be	at	least	one	row	and	one	column.	These	are	created	using
the	<tr>	(for	table	row)	and	<td>	(for	table	data)	tags.	In	the	following	example,	two	rows
of	three	columns	each	are	created:

The	<tr>	and	</tr>	tags	are	used	twice	for	the	two	rows,	while	there	are	six	instances
of	<td>	and	</td>	for	the	six	cells	(two	rows	of	three).	Both	these	types	of	tags	also
accept	the	bgcolor,	height,	and	width	attributes	that	<table>	itself	does	(with	the
exceptions	noted	below).

The	<tr>	tag	accepts	bgcolor	in	HTML4,	but	not	height	and	width,	while	the	<td>	tag	accepts	all	three
attributes	(but	only	in	HTML4).

Therefore,	the	following	HTML	creates	the	same	table	but	sets	the	top	row	of	the
table	to	green	and	the	bottom	to	yellow.	It	also	sets	the	first	column	width	to	exactly	200
pixels	and	then	the	remaining	two	columns	to	25	percent	each	(by	using	the	%	symbol)	of
whatever	width	remains	(in	this	case	250	pixels,	leaving	125	pixels	each),	as	shown	in
Figure	5-2.

FIGURE	5-2	A	simple	table	with	two	rows	and	three	columns

Because	the	widths	have	already	been	specified	in	the	first	row,	there	is	no	need	to	do	so	again	for	the	second.

If	you	want	the	top	row	of	your	table	to	be	a	header,	you	can	use	CSS	styling	or

HTML	tags	to	format	the	headings	in	bold	and	otherwise	change	them,	or	you	can	use	the
<th>	and	</th>	tags	(for	table	heading),	in	a	similar	fashion	to	the	<td>	and	</td>	tags,
like	this:

As	you	can	see	from	Figure	5-3	(in	which	this	additional	HTML	has	been	inserted
before	the	green	and	yellow	rows),	the	use	of	these	tags	is	identical	to	<td>	and	</td>,
with	the	only	exception	being	in	the	way	the	cell	content	is	displayed;	it	is	bold	and
centered.

FIGURE	5-3	A	heading	row	of	cells	has	been	added	to	the	table.

To	further	enhance	the	way	tables	display,	you	can	also	use	the	<caption>	tag	to
properly	caption	them.	So	let’s	bring	this	tag	and	all	the	others	together	into	a	real-world
example	of	a	useful	table,	as	shown	in	Figure	5-4,	which	was	created	with	the	following
HTML	from	data	at	wikipedia.org:

FIGURE	5-4	A	table	detailing	browser	market	share	for	March	2014

Extending	Rows	and	Columns
With	HTML	tables,	you	are	not	limited	to	a	fixed	number	of	rows	and	columns	because
you	can	make	some	cells	extend	over	more	than	one	column	and/or	more	than	one	row
using	the	colspan	and	rowspan	attributes.	For	example,	in	the	following	very	simple	table,
the	numbers	1	through	10	are	displayed	in	a	table	of	three	rows	by	four	columns,	as	shown
in	Figure	5-5.	This	means	that	there	are	two	extra	cells	that	are	not	used	and	which	are
therefore	merged	into	one	and	grayed	out:

FIGURE	5-5	Two	cells	have	been	merged	using	the	colspan	attribute.

I	have	employed	a	few	other	interesting	features	in	this	table	including	setting	its	width	to	450	pixels	and	the
width	of	each	column	to	25	percent	of	that,	the	height	of	the	table	to	200	pixels,	and	using	the	align	attribute
with	a	value	of	center	to	center	the	contents	of	each	table	row.	I	have	also	used	comment	tags	to	show	where	the
omitted	cell	would	have	been.

Because	the	third	cell	on	the	third	row	is	now	two	cells	wide,	there	is	no	fourth	cell	to
define	in	that	row,	and	so	none	is	defined.

You	can	also	extend	a	cell	over	two	rows,	as	in	the	following	example,	which	is
modified	from	the	previous	one	using	the	rowspan	attribute	(the	result	of	which	is	shown
in	Figure	5-6):

FIGURE	5-6	Two	cells	have	been	merged	using	the	rowspan	attribute.

Because	the	fourth	cell	on	the	second	row	is	now	two	cells	deep,	there	is	no	fourth	cell
to	define	in	the	bottom	row	and	so,	again,	the	final	cell	is	not	defined.

Following	is	an	example	of	a	table	that’s	four	rows	by	four	columns	that	could	be	used
as	the	basis	for	a	simple	board	game.	It	combines	both	the	rowspan	and	colspan	attributes

by	displaying	the	numbers	1	through	12	clockwise	in	small	cells,	around	a	larger	central
cell	of	double	width	and	height,	as	shown	in	Figure	5-7:

FIGURE	5-7	The	four	central	cells	have	been	merged	using	rowspan	and	colspan.

Summary
Now	that	you	have	lists	and	tables	added	to	your	HTML	toolkit,	you	have	the	ability	to
really	make	your	web	pages	stand	out.	In	the	next	lesson	I	will	show	you	how	to	add
interactivity	to	your	pages	using	hyperlinks,	forms,	and	frames.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			Which	HTML	tag	do	you	use	to	begin	an	ordered	list?

2.			What	tag	is	used	to	denote	a	list	item?

3.			How	do	you	specify	an	unordered	list	in	HTML?

4.			How	can	you	change	the	start	value	of	an	ordered	list?

5.			How	can	you	change	the	bullet	type	of	an	unordered	list	or	the	case	of	an
alphabetic	or	roman	ordered	list?

6.			Which	three	tags	are	used	by	definition	lists?

7.			Which	tag	is	used	to	create	an	HTML	table?

8.			What	tags	are	used	for	table	rows,	table	cells,	and	table	headings?

9.			How	can	you	add	a	caption	to	an	HTML	table?

10.			Which	two	attributes	allow	cells	to	spread	out	over	more	than	one	row	or
column?

T

Links,	Forms,	and	Frames

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

he	great	thing	about	the	Internet	is	the	way	documents	located	anywhere	in	the	world
can	be	linked	to	each	other	so	that	you	can	navigate	to	them	with	a	single	mouse	click.

This	interconnectedness	even	extends	to	the	ability	to	embed	pages	or	portions	of	pages
from	the	same	or	any	other	website,	anywhere	at	all,	within	the	current	page.

The	same	goes	for	sending	data	to	websites	and	web	pages,	which	is	often	achieved
using	forms.	The	data	in	a	form	can	be	posted	to	a	web	server	for	processing	or,	if	it	is	sent
in	the	correct	way,	a	simple	JavaScript	can	receive	the	data	and	act	on	it,	without	recourse
to	the	web	server.

In	this	lesson	I	show	how	all	these	things	work	and	how	you	can	use	them	to	their	best
effect.

Using	Hyperlinks
To	create	a	link	to	another	document,	you	must	first	know	where	this	new	document
resides;	in	other	words,	whether	it	is	on	the	local	server	or	another	one.	An	external	web
address	(on	a	different	server)	uses	what	is	known	as	an	absolute	URL	(Uniform	Resource
Locator),	which	usually	begins	with	http://	(or	https://	for	secure	sites	that	use	encryption),
such	as:
http://bbc.co.uk

It	can	be	more	complicated	than	that	simple	URL,	by	including	the	folder	structure
(and	sometimes	a	filename	too)	within	which	a	web	page	resides,	like	this,	which	accesses
the	folder/weather:
http://bbc.co.uk/weather/

Some	organizations	distinguish	different	servers	by	adding	a	prefix	before	the	domain
name,	the	most	common	of	which	is	www,	like	this:
http://www.bbc.co.uk

Because	typing	www.	involves	an	extra	four	characters,	most	good	websites	allow	you
to	ignore	this	prefix	(but	not	all).	But	when	it	is	used,	it	denotes	the	organization’s	main
web	server.	Alternative	servers	may	use	prefixes	such	as	news,	like	this	(which	leads	to	the
BBC’s	news	service):
http://news.bbc.co.uk

http://www.mhprofessional.com/nixonhtml5

The	Query	String
Many	websites	support	the	use	of	a	query	string,	which	is	a	string	of	data	placed	after	the
URL	to	provide	additional	information	to	a	web	server.	For	example,	the	following	URL
passes	the	value	html5	to	the	field	name	q	on	Google’s	search	page,	the	result	of	which	is
shown	in	Figure	6-1:
https://google.com/search?q=html5

FIGURE	6-1	The	Google	search	engine	returning	results	for	“html5”

Query	strings	begin	with	a	?	character,	followed	by	a	field/value	pair	that	is	separated
by	an	=	sign.	Further	field/value	pairs	may	follow	if	preceded	by	a	&	character,	like	this:
https://google.com/search?q=html5&hl=fr

Here	the	field	name	hl	is	set	to	the	value	fr,	which	has	the	result	of	changing
Google’s	default	language	for	this	session	to	French,	as	shown	in	Figure	6-2.	I	cover	query
strings	in	more	detail	in	the	section	on	forms.

FIGURE	6-2	Like	Figure	6-1,	but	presented	in	French	due	to	the	query	string	used

Relative	URLs
When	documents	reside	on	the	current	server,	you	can	access	them	more	easily	and	make
them	more	portable	by	using	relative	instead	of	absolute	URLs.	For	example,	if	you	need
to	link	to	the	file	agenda.htm	in	the	current	folder,	you	can	simply	use	its	name	as	the
URL,	like	this:
agenda.htm

Or,	if	the	document	is	in	the	subfolder	meetings,	you	could	refer	to	it	like	this:
meetings/agenda.htm

Alternatively,	if	the	file	is	in	the	parent	folder	of	the	current	one,	you	can	use	the
special	token	../	which	simply	specifies	that	the	document	can	be	found	one	directory
higher	up,	like	this:
../agenda.htm

There	again,	if	the	file	is	in	a	sister	folder,	perhaps	called	misc,	you	can	easily	refer	to
it	by	referencing	the	folder	from	the	parent	one,	like	this:
../misc/agenda.htm

Finally,	to	refer	to	the	root,	or	uppermost,	folder	of	the	current	drive	or	web	location,
you	use	the	/	symbol.	So	if	the	file	is	in	the	root	folder,	it	can	be	accessed	like	this:
/agenda.htm

This	form	of	accessing	is	not	fully	relative	to	the	current	folder	since	it	includes	a	jump	all	the	way	to	the	root
folder,	and	the	distance	between	the	root	and	current	folder	is	not	indicated	in	this	form	of	URL.

Creating	Links
To	create	a	link	within	an	HTML	document,	you	apply	the	<a>	tag,	supplying	a	value	to	an
attribute	called	href	(for	hypertext	reference),	like	this:
Visit	Google

The	final		tag	closes	the	pair	of	tags,	which	encompass	the	text	to	be	displayed
for	the	link,	which	in	the	preceding	case	simply	looks	like	this:
Visit	Google

If	linking	relatively	to	the	file	agenda.htm,	discussed	in	the	previous	section,	you
might	use	one	of	the	following	forms	of	HTML	depending	on	the	file’s	location:

All	of	these	display	in	the	same	way,	like	this:
View	the	agenda	here.

URLs	in	Images
In	Lesson	4	I	showed	how	to	embed	images	in	documents,	but	assumed	that	the	pictures
resided	in	the	current	folder.	But,	in	fact,	they	can	reside	almost	anywhere	on	the	current
server,	or	elsewhere	on	the	Internet,	and	all	of	the	following	are	valid	HTML	for
displaying	an	image	located	in	different	places:

The	target	Attribute
You	can	specify	whether	a	linked	URL	should	replace	the	current	web	page	or	open	in	a

new	one	by	supplying	a	value	for	the	target	attribute.	For	example,	if	you	would	like	a
web	page	to	open	in	a	new	blank	window	(or	tab,	according	to	how	the	user’s	web
browser	is	configured),	you	can	add	the	specifier	target=′_blank′,	like	this:
Visit	Google

There	are	three	other	reserved	words	you	can	also	supply	to	the	target	attribute:
_self	to	replace	the	current	page	(the	default),	_parent	to	replace	the	parent	page	or
frame	(if	the	current	document	resides	in	a	frame),	or	_top	to	ignore	any	and	all	frames
and	replace	the	entire	contents	of	the	current	browser	window	with	the	new	document.

Additionally,	if	you	have	already	named	a	frame,	window,	or	tab	using	the	relevant
HTML	or	JavaScript,	you	can	specify	that	name	as	the	target	in	place	of	one	of	the	four
reserved	words.

Creating	an	Anchor
It	is	even	possible	to	link	to	a	section	of	a	web	page	by	first	specifying	an	anchor	using	the
name	attribute	of	the	<a>	tag,	like	this:

Now	you	can	link	directly	to	that	section	of	the	web	page	using	a	query	string
referring	to	the	anchor	name,	preceded	by	a	#	symbol,	like	this:
Click	this	link

When	it	is	passed	this	URL,	the	web	browser	will	load	in	the	specified	page	and	then
scroll	it	so	that	the	section	beginning	with	the	anchor	name	is	at	the	top	of	the	browser
window.	In	HTML5	the	name	attribute	has	been	obsoleted	in	favor	of	id.

A	good	example	of	anchors	in	action	is	the	Wikipedia	page	on	the	subject.	Go	to	the	website	at	wikipedia.org
and	enter	the	search	term	html	anchor.	You	will	then	be	taken	to	the	Wikipedia	HTML	Element	page,	and	then
scrolled	down	automatically	to	the	section	about	anchors,	as	shown	in	Figure	6-3.

FIGURE	6-3	The	Wikipedia	Anchor	section	is	itself	an	anchor.

Building	Forms
Web	forms	are	the	means	with	which	you	can	request	input	from	the	user	of	a	web	page.
Historically,	web	form	data	has	been	posted	to	the	web	server	and	then	processed,	but
nowadays	form	data	can	be	preprocessed	using	JavaScript	to	ensure	that	it	is	in	the	form
required	and	all	fields	are	correctly	completed.	Additionally,	through	the	use	of	Ajax,	a
technology	whereby	JavaScript	communicates	behind	the	scenes	with	a	web	server,
modern	forms	can	check	for	the	availability	of	a	username	you	prefer,	before	you	even
submit	a	form.

In	fact	JavaScript	can	incrementally	submit	all	parts	of	a	form	as	you	fill	it	in,	avoiding	the	need	to	use	a
submit	button	at	all.	And	where	input	is	used	only	to	control	the	current	web	page	(and	no	interaction	is	required
with	the	web	server),	JavaScript	can	read	from	and	write	to	form	fields,	and	retrieve	data	from	a	query	string.

An	HTML	form	begins	with	the	<form>	tag	and	is	closed	with	</form>,	and	the	tag
supports	three	commonly	used	attributes,	as	follows:

•			method	There	are	two	values	accepted	by	this	attribute:	post	or	get.	When	you
select	post,	all	the	form	data	is	sent	to	the	web	server	invisibly	(using	headers),	but
when	using	get,	the	data	is	appended	to	an	HTML	request	in	a	query	string.	This	can
result	in	messy-looking	URLs	but,	among	other	possibilities,	it	does	enable	a	form	to
be	posted	to	a	JavaScript	program	rather	than	a	web	server.

•			action	This	attribute	should	contain	the	URL	to	which	the	form	is	to	be
submitted.	If	the	form	is	sent	using	a	get	request	and	then	a	?	followed	by	the	form,
data	(as	a	query	string)	will	be	tacked	onto	this	value.

•			enctype	This	attribute	tells	the	program	that	will	receive	the	form	what	type	of
data	to	expect,	out	of:	application/x-www-form-urlencoded,	multipart/form-data,
and	text/plain.	The	first	encodes	all	characters	before	transmitting	the	form.	The
second	is	used	when	a	file	is	also	(or	only)	being	uploaded	to	a	web	server.	In	the	last
form,	text	is	transmitted,	with	spaces	converted	into	+	symbols	for	use	in	a	query
string.	By	default,	if	no	encoding	is	specified,	application/x-www-form-urlencoded
is	used.

Figure	6-4	shows	a	range	of	form	elements	all	incorporated	into	a	single	form,	using
the	following	HTML:

FIGURE	6-4	A	form	incorporating	a	variety	of	elements

The	<pre>	and	</pre>	tags	are	used	here	simply	to	help	space	out	the	form	without	having	to	use	CSS	or
several	HTML	tags.	It	tells	the	browser	to	display	all	spaces	within	the	tags	as	it	encounters	them,	and	not	to	treat
them	as	collapsible	whitespace.

The	<input>	Tag
The	code	in	the	preceding	section	makes	use	of	the	following	type	attribute	values	of	the
<input>	tag:

•			text	This	value	creates	an	input	field	suitable	for	entering	text.	You	can	change
the	width	of	the	input	field	with	the	size	attribute	and	limit	the	number	of	characters
allowed	with	the	maxlength	attribute.

•			password	This	value	creates	an	input	field	suitable	for	entering	passwords	in	that

all	typed	characters	are	replaced	with	the	*	character	when	displayed,	but	are	properly
stored	internally.	You	can	change	the	width	of	the	input	field	with	the	size	attribute
and	limit	the	number	of	characters	allowed	with	the	maxlength	attribute.

•			radio	Each	form	may	have	any	number	of	radio	buttons,	but	only	one	can	be
active	at	a	time.	When	another	radio	button	is	clicked,	the	previously	selected	one	is
deselected.	Radio	buttons	are	round.

•			checkbox	You	use	this	value	to	create	checkboxes,	which	are	like	radio	buttons
but	are	square,	and	more	than	one	may	be	selected	at	a	time.

•			hidden	Sometimes	you	may	wish	to	pass	a	value	in	a	web	form	that	the	user
shouldn’t	see,	such	as	an	identifying	token	or	other	data,	and	doing	so	is	accomplished
by	passing	this	value.	In	this	case,	you	will	also	have	to	provide	the	value	to	be	posted
in	the	value	attribute	(see	the	section	“The	value	Attribute”).

•			submit	This	value	creates	a	button	that	will	submit	the	form.	By	default	the
button	will	read	Submit	or	Submit	Query.

The	name	Attribute
When	sending	data	using	a	form,	you	need	to	give	each	item	of	data	a	name	so	that	both
your	form	and	the	receiving	program	know	which	piece	of	data	is	for	what.	To	do	this	you
use	the	name	attribute,	like	this:
<input	type=′text′	name=′firstname′>

Here	the	field’s	name	is	firstname	and	therefore	it	is	clear	that	this	will	be	used	for
the	input	of	a	person’s	first	name.

The	value	Attribute
You	can	specify	a	predefined	value	for	any	form	field	by	assigning	it	using	the	value
attribute,	like	this:
<input	type=′text′	name=′firstname′	value=′Guest′>

Here	a	default	value	of	Guest	is	given	to	the	input	field,	which	could	be	useful,	for
example,	if	allowing	guests	to	make	posts	in	a	guestbook	or	comment.	Such	predefined
fields	can	be	overwritten	or	edited	by	the	user,	so	the	value	is	not	fixed.

The	<textarea>	Tag
Sometimes	the	single	line	of	input	supplied	by	the	<input>	tag	is	insufficient	in	size,	in
which	case	you	can	use	the	<textarea>	tag,	which	supports	adjustable	width	and	height,
over	more	than	one	line	of	input.	Unlike	the	<input>	tag,	however,	predefined	data	is	not
passed	through	a	value=	attribute.	Instead,	whatever	you	place	between	<textarea>	and
</textarea>	tags	becomes	the	predefined	input,	which	can	then	be	edited	or	replaced	by
the	user.

Therefore	the	following	lines	provide	an	empty	and	a	predefined	textarea	input	with	a
default	width	of	20	characters	and	height	of	two	lines:

You	can	specify	the	number	of	rows	and	columns	to	use	for	the	textarea	with	the
rows	and	cols	attributes,	like	the	following,	which	creates	an	area	30	characters	wide	and
five	lines	high:
<textarea	name=′summary′	rows=′5′	cols=′30′></textarea>

The	<select>	Tag
If	you	need	a	drop-down	list	of	options	from	which	a	user	can	select	one,	you	can	use	the
<select>	tag	in	conjunction	with	a	secondary	tag,	<option>.	Together	these	tags	let	you
create	a	list	of	values	and	names	to	display,	that	will	pop	down	when	clicked,	like	this:

The	fourth	element	in	the	list	has	been	set	as	the	default	by	using	the	attribute
selected=′selected′.	When	the	list	is	popped	down,	this	option	will	be	the	one	shown
as	selected	and	will	stay	so,	unless	the	user	chooses	a	different	element.	If	your	HTML
will	not	be	repurposed	in	XHTML	format,	you	can	omit	the	=′selected′	assignment,	and
simply	apply	the	keyword	selected	like	this:	<option	value=′v
′selected>Vanilla</option>.

The	<button>	Tag
This	tag	displays	a	clickable	button	but,	depending	on	your	target	audience,	you	may
choose	not	to	use	it	because	Internet	Explorer	versions	7	or	lower	will	submit	the	contents
between	the	<button>	and	</button>	tags,	while	other	browsers	submit	the	contents	of	its
value	attribute.	If	you	are	certain	your	users	will	be	on	IE	8	or	higher	(or	another
browser),	this	tag	will	be	safe	to	use.

The	<label>	Tag
This	tag	is	especially	handy	for	use	with	radio	buttons	or	checkboxes	(which	are	small)
because	you	can	place	one	of	these	elements	alongside	some	explanatory	text,	and	if	you
surround	them	both	with	<label>	and	</label>	tags,	the	user	can	click	either	the	text	or
the	radio	button	or	checkbox	to	activate	it.	Here’s	a	common	example:

This	example	displays	as	follows,	and	clicking	any	part	of	it	(not	just	the	checkbox)
will	check	or	uncheck	the	box:

	I	agree	to	these	terms	and	conditions.

Frames	and	Iframes
There	are	two	ways	in	which	you	can	embed	entire	web	pages	within	other	pages:	frames
and	iframes.	The	first	way	to	do	this,	and	the	least	recommended,	is	to	use	frames	to	split	a
web	page	into	the	multiple	parts	and	then	place	them	all	in	frames	within	the	<frameset>
tag,	like	this	(although	it	is	obsolete	in	HTML5):

Note	the	use	of	the	<noframes>	and	</noframes>	tags	in	the	example	to	display	alternative	content	to	users
whose	browser	doesn’t	support	frames.	Although	all	modern	mainstream	browsers	do	support	frames,	some
specialist	ones	such	as	audio	browsers	for	blind	people,	or	text-only	browsers,	may	benefit	from	the	use	of	these
tags.

This	results	in	a	top	frame	that	takes	up	20	percent	of	the	browser	height	and	which	is
pulled	in	from	the	file	header.htm.	Then	there’s	the	main	frame,	which	(due	to	the	*
attribute	in	the	rows	attribute)	will	expand	to	fit	whatever	space	there	is	after	the	fixed-size
frames	are	in	place.	It	is	loaded	in	from	the	file	body.htm.	And	finally	the	footer	frame	is
loaded	in	from	footer.htm	and	placed	in	the	bottom	20	percent	of	the	web	page.

The	problem	with	this	method	is	that	the	entire	web	page	is	made	up	of	frames	and
there	is	no	content	on	the	page	itself.	This	is	obviously	not	ideal	and	is	not	good	for
ranking	in	search	engines,	which	will	not	find	such	a	page	very	interesting.

Instead	I	recommend	that	when	you	need	a	frame	you	use	an	<iframe>	tag,	as	shown
in	Figure	6-5	(in	which	a	Wikipedia	page	has	been	embedded	within	another	web	page),
because	you	can	drop	a	frame	of	any	width	and	height	anywhere	in	a	document	as	easily
as	if	it	were	an	image,	like	this:

FIGURE	6-5	A	Wikipedia	page	is	embedded	in	another	web	page.

Summary
This	lesson	completes	most	of	your	introduction	to	HTML.	The	following	lesson	takes
you	through	the	remaining	HTML	4.01	tags	which	(combined	with	this	chapter)	you	can
use	as	a	reference	if	you	are	new	to	HTML,	or	as	a	refresher	if	you	are	a	seasoned	user.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			HyperText	Transfer	Protocol	uses	the	string	http://	to	preface	insecure	Internet
URLs,	but	how	do	you	access	encrypted,	secure	URLs?

2.			If	http://mydomain.com	calls	up	the	root	of	a	web	server,	how	can	you	access
a	subfolder	from	this	root	called	folder?

3.			How	would	you	format	a	link	to	the	website	mydomain.com	in	HTML?

4.			Without	mentioning	a	domain	by	name,	what	URL	will	take	the	user	to	the
root	document	of	a	domain?

5.			How	can	you	make	a	destination	URL	from	a	hyperlink	load	into	a	frame	or
window	other	than	the	current	one?

6.			How	can	you	hyperlink	directly	to	a	section	within	a	web	document?

7.			What	HTML	tag	is	used	to	create	a	form?

8.			How	can	you	request	a	single	text	input	line	from	a	user?

9.			How	can	you	provide	more	than	a	single	line	of	space	to	input	text?

10.			What	tag	can	you	use	to	embed	another	document	within	the	current	one?

http://mydomain.com
http://www.mydomain.com

A

Using	the	Remaining	HTML4	Tags

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

t	this	point	in	the	book	you	now	understand	what	HTML	is	and	how	to	use	many
HTML4	tags.	So,	in	this	lesson,	to	illustrate	how	you	can	apply	your	new	knowledge

to	any	and	all	elements,	we’ll	look	at	implementing	a	few	of	the	tags	you	haven’t	seen	so
far.

At	the	same	time	you	need	to	know	which	HTML4	elements	have	been	deprecated	or
obsoleted	in	HTML5.	Although	you	can	still	use	them	(for	now),	deprecated	and	obsoleted
tags	have	been	superseded	by	better	methods	of	achieving	the	same	result,	so	the
developers	of	the	HTML	standard	are	giving	us	a	warning	that	they	reserve	the	right	to
remove	these	tags	altogether	at	some	point	in	the	future—therefore	you	should	avoid	using
them	in	all	new	documents.

As	well	as	exploring	some	of	the	remaining	HTML4	elements,	we’ll	also	be	looking
at	how	to	replicate	the	functionality	of	the	deprecated	HTML4	tags	using	CSS,	or	alternate
tags.

Conditional	HTML	for	Internet	Explorer
The	Microsoft	Internet	Explorer	browser	makes	use	of	comment	tags	to	create	conditional
sections	of	HTML	for	all	versions	between	5	and	9.	The	reason	for	this	is	that	IE	has
several	different	ways	of	interpreting	HTML	depending	on	the	version	of	the	browser
used,	and	the	workaround	Microsoft	created	to	cater	for	these	differences	is	to	allow
developers	to	place	several	different	browser-specific	sections	of	HTML	in	a	single
document,	processing	only	those	relevant	to	a	particular	browser	version.

You	use	IE	conditional	comments	by	inserting	a	pair	of	square	brackets	immediately
following	the	opening	<!--	comment	marker,	placing	an	if	statement	inside,	like	this:

In	this	instance	the	text	in	the	comment	is	displayed	only	by	the	IE	6	web	browser.	All
other	versions	of	Internet	Explorer	and	all	other	browsers	will	completely	ignore	the	text
within	the	comment	tags.	There	are	several	possible	statement	types	you	can	use,	as
follows.

Simple	Comparisons

http://www.mhprofessional.com/nixonhtml5

The	previous	example	is	a	simple	comparison,	in	which	the	IE	constant	is	tested	to	see
whether	it	has	a	value	of	6,	indicating	that	the	current	browser	is	IE	6.	You	can	also	simply
test	for	the	browser	being	any	version	of	IE	by	leaving	out	the	numeric	value,	like	this:

Higher	or	Lower	Values
If,	for	example,	you	wish	to	display	some	HTML	only	to	versions	of	Internet	Explorer
prior	to	version	9,	you	can	use	this	form	of	conditional	HTML:

Here	the	lt	stands	for	less	than,	and	so	the	content	of	the	comment	tags	is	only
uncommented	if	the	browser	is	any	version	of	Internet	Explorer	up	to	and	including
version	8.	Another	way	to	achieve	the	same	result	is	with	the	lte	operator,	which	stands
for	less	than	or	equal	to,	like	this:

You	can	also	check	for	a	version	of	IE	being	greater	than	a	given	value,	as	with	the
two	following	conditional	comments,	both	of	which	only	display	the	contents	of	the	tags	if
the	browser	is	IE	8	or	greater:

The	Not	Operator
You	can	also	test	for	the	inverse	of	a	comparison	using	the	not	operator	(which	is	an
exclamation	mark),	like	the	following,	which	displays	the	contents	only	if	the	browser	is
Internet	Explorer,	but	not	version	6.	Note	the	use	of	brackets	to	contain	the	expression	that
follows	the	!	symbol.

The	Mark	of	the	Web
Internet	Explorer	also	uses	comments	to	stamp	what	it	calls	The	Mark	of	the	Web	onto	an
HTML	document,	as	a	way	of	setting	the	security	zone	to	which	a	document	applies
during	development.	For	example,	the	following	sets	the	security	zone	to	the	local
intranet:
<!--	saved	from	url=(0016)http://localhost	-->

And	this	comment	sets	the	security	zone	to	the	Internet:
<!--	saved	from	url=(0014)about:internet	-->

For	further	information,	please	visit	tinyurl.com/motweb.

Let′s	now	take	a	look	at	the	tags	themselves.

<abbr>	…	</abbr>

This	tag	states	that	the	content	is	an	abbreviation.	It	is	most	helpful	to	specialized
browsers	(such	as	those	for	visually	impaired	people)	or	search	engine	web	crawlers,	and
is	best	used	in	conjunction	with	a	title	attribute	so	that	users	can	see	an	explanation
when	they	pass	the	mouse	over	it,	like	this:
<abbr	title=′Sound	Navigation	And	Ranging′>SONAR</abbr>

You	can	also	use	the	<dfn>	(for	definition)	tag	in	a	similar	way	to	achieve	the	same
result.

<acronym>	…	</acronym>	(Obsolete)
This	element	denotes	an	acronym	but	it	is	now	obsolete	and	you	should	use	<abbr>
instead—it	works	in	the	exactly	the	same	way.

<address>	…	</address>

This	element	denotes	the	contents	as	containing	address	data.	It	is	helpful	to	specialized
HTML	readers	and	search	engine	web	crawlers.	Simply	remember	to	place	the	opening
and	closing	tags	around	any	addresses	you	put	in	a	document	to	make	them	more	easily
machine	locatable,	like	this:

<applet>	…	</applet>	(Obsolete)
This	element	used	to	be	one	way	you	could	load	an	external	app	into	a	document,	but	it	is

http://localhost
http://www.tinyurl.com/motweb

now	obsolete	and	you	should	use	<object>	instead.

<area>

This	element	creates	an	area	within	an	image	map,	which	can	then	be	styled	with	CSS,	or
have	a	hyperlink	attached.	To	use	it,	you	must	first	load	in	an	image	to	use	as	a	map,	like
this:

With	the	image	loaded,	you	use	the	<map>	tag	to	create	an	image	map,	and	then	place
one	or	more	<area>	tags	inside	it	to	define	the	area(s)	you	want,	like	this:

The	shape	attribute	can	have	values	of	rect,	circle,	or	poly,	and	the	coords	attribute
must	then	contain	the	values	specifying	the	shape.	Optionally,	you	can	supply	a	title
attribute	for	a	tooltip,	an	href	to	create	a	hyperlink,	and	so	on.	Figure	7-1	shows	the
face.png	image	loaded.	The	image	map	areas	and	tooltips	will	only	be	visible	when	the
mouse	passes	over	them.

FIGURE	7-1	Several	examples	from	this	lesson

<base>

Use	this	tag	to	specify	the	base	destination	for	all	URLs	in	a	document	and,	optionally,	a
target	window	or	tab.	For	example,	if	you	wish	all	relative	links	in	a	document	to	refer	to
the	base	URL	http://mywebsite.com/project/	even	if	the	document	is	located	elsewhere	on
the	Internet,	you	can	make	this	happen	as	follows:
<base	href=′http://mywebsite.com/project/′>

Now,	any	hyperlinks	that	are	relative	will	be	applied	to	that	base.	For	example,	the
following	will	now	link	to	http://mywebsite.com/project/news.htm:
News

This	will	work	even	if	you	serve	the	current	document	from	a	local	file	system,	or
from	anywhere	else,	making	this	a	great	way	to	handle	documents	that	have	to	be

http://mywebsite.com/project/
http://mywebsite.com/project/
http://mywebsite.com/project/news.htm

relocated	away	from	their	original	location	for	some	reason.

<basefont>	(Obsolete)
With	this	tag	you	used	to	be	able	to	set	the	default	font,	color,	and	size,	but	it	is	now
obsolete	and,	instead,	you	are	recommended	to	use	CSS,	like	this	example,	which	sets	12-
point	text	in	a	blue	Arial	font:

And	you	can	then	use	the	mystyle	class	like	this:
Some	text

To	assign	a	CSS	rule	to	all	elements	in	a	document’s	body	(emulating	the	<basefont>
tag),	you	can	apply	a	rule	to	the	body	as	follows,	but	be	careful	as	you	may	find	that	you
don’t	actually	want	everything	to	display	the	same	way:

<bdo>	…	</bdo>
With	this	tag	you	can	change	the	direction	in	which	text	flows.	It	takes	two	values	for	the
dir	attribute:	ltr	(the	default)	for	left	to	right—for	displaying	most	western	languages,
and	rtl	for	right	to	left—for	displaying	languages	such	as	Arabic.	You	use	it	like	this:
<bdo	dir=′rtl′>Mary	had	a	little	lamb</bdo>

Underneath	the	face	image	in	Figure	7-1,	you	can	see	the	result	of	applying	this
HTML	is	to	display	bmal	elttil	a	dah	yraM.

<big>	…	</big>	(Obsolete)	and	<small>	…
</small>

The	<big>	element	enlarges	the	size	of	text	but	is	obsolete	in	HTML5,	so	you	should	use
CSS	to	achieve	the	same	effect.	For	example,	the	following	CSS	rule	(which	should	be	in
the	<style>	section	of	a	document)	creates	a	class	called	big	that	doubles	text	size:

.big	{	font-size:200%;	}

You	can	then	use	the	class	like	this:
Normal	text.	Big	text.	Normal	again.

Opposite	to	<big>	there	is	the	<small>	tag,	which	is	not	obsolete	in	HTML5	because
it	has	been	assigned	a	semantic	meaning,	but	can	probably	be	better	achieved	with	CSS
when	you	just	want	smaller	text	rather	than	to	imply	something	has	less	emphasis,	such	as
the	following	to	create	a	new	class	called	small:
.small	{	font-size:50%;	}

You	can	then	use	the	class	like	this:
Normal	text.	Small	text.	Normal	again.

<blockquote>	…	</blockquote>
With	this	element	you	can	specify	a	large	section	of	text	to	be	a	quotation	from	another
source,	so	that	it	will	be	styled	differently,	like	this:

To	define	a	shorter	quotation	you	can	use	the	<q>	tag	as	follows,	and	quotation	marks
will	be	placed	around	it	by	the	browser,	as	shown	in	Figure	7-2:
Dr.	Seuss	said,	<q>Don′t	cry	because	it′s	over,	smile	because	it	happened.

</q>

FIGURE	7-2	Using	<blockquote>	and	<q>	elements

<center>	…	</center>	(Obsolete)

This	tag	was	used	to	align	text	to	the	center	of	the	browser,	but	it	is	now	obsolete	in	favor
of	using	CSS,	such	as	this	rule	that	creates	a	class	called	center:

This	works	because	it	forces	elements	to	which	it	is	applied	to	display	as	block
elements	(rather	than	inline),	before	setting	the	text	alignment	to	centered.	Once	the	class
has	been	created,	just	apply	it	to	your	HTML,	like	this:
This	is	some	left-aligned	text

This	is	centered	text

<cite>	…	</cite>
You	can	provide	a	citation	for	a	section	of	text	using	this	tag,	as	follows:
<cite>Yesterday</cite>	by	the	Beatles.	Recorded	in	1965.

Other	than	italicizing	(or	otherwise	slightly	modifying	its	display),	this	tag	has	no
effect.	Its	main	purpose,	though,	is	to	provide	information	to	specialist	HTML	readers	and
search	engine	web	crawlers	indicating	the	title	of	a	work.

<code>	…	</code>
When	you	wish	to	display	some	text	as	if	it	is	programming	code,	you	can	use	this	tag	as
follows:

However,	this	tag	doesn’t	cause	line	feeds	to	be	displayed,	and	neither	does	it	show
the	spacing.	Instead	the	preceding	example	will	display	all	on	one	line.	To	overcome	this,
you	should	restrict	this	tag	for	use	on	single	lines,	and	probably	use	the	<pre>	tag	instead

(as	shown	in	Figure	7-3),	which	displays	text	as	it	finds	it—in	other	words,	preformatted.

FIGURE	7-3	The	difference	between	<code>	and	<pre>	elements

The	<samp>	tag	is	identical	to	the	<code>	tag	and	can	be	used	in	the	same	way,
although	they	do	have	different	semantic	meanings	in	HTML5.	There	is	also	a	<tt>	tag,
which	is	meant	to	emulate	the	output	of	a	teletype	machine,	and	the	<kbd>	tag,	which	you
can	use	to	make	output	display	as	if	it	has	been	entered	at	the	keyboard.	All	have	the	same
formatting	drawback	that	is	corrected	using	the	<pre>	tag.

Also	similar	to	these	is	the	<dir>	tag,	which	is	now	obsolete	but	was	intended	to	make
its	contents	look	like	a	directory	listing.	Again,	however,	it	did	not	issue	line	feeds	and
would	actually	wrap	several	lines	if	you	didn’t	use	a	
	tag	after	each—so	it	wasn’t	very
useful	anyway.	If	you	encounter	this	tag	when	maintaining	a	web	page,	you	should
probably	replace	it	with	one	of	the	preceding	non-obsolete	tags.

<col>	and	<colgroup>
This	tag	specifies	properties	for	each	column	within	a	<colgroup>	section	of	a	table.	For
example,	to	change	the	background	colors	for	the	columns	of	a	table,	you	could	use
HTML	such	as	this	(as	shown	in	Figure	7-4):

FIGURE	7-4	A	table	with	colored	columns

	…	
Use	this	tag	to	indicate	that	a	section	of	text	should	display	as	if	it	has	been	deleted.	This
tag	is	often	used	in	conjunction	with	the	<ins>	tag	to	show	a	modification	or	correction
that	has	been	made	(a	deletion	followed	by	an	insertion),	as	shown	in	the	second	line	up
from	the	bottom	of	Figure	7-1:
I	was	pleased	<ins>delighted</ins>	to	meet	her!

This	tag	should	also	be	used	in	preference	to	the	equivalent	<strike>	tag,	which	has
been	obsoleted	in	HTML5.	You	can	also	use	the	<s>	tag	for	the	same	effect,	although	<s>
and		have	differing	semantic	meanings	in	HTML5.

<fieldset>	…	</fieldset>
When	you	need	to	group	a	collection	of	form	fields	together,	you	can	do	so	with	this	tag,
which	draws	a	box	around	the	grouped	(contained)	elements.	In	conjunction	with	the
<legend>	tag,	it	creates	a	title	that	breaks	into	the	box	border.	Use	it	like	this	and	the	result
will	look	like	Figure	7-5:

FIGURE	7-5	Using	<fieldset>	and	<legend>	elements

	…		(Obsolete)
This	obsolete	tag	used	to	let	you	change	the	font	type,	size,	and	color,	all	things	that	are
better	done	using	a	CSS	class,	like	this:

And	you	can	then	use	the	offer	class	like	this:
This	product	is	on	special	offer!

<frameset>	(Obsolete)
In	the	past	you	used	to	use	this	tag	in	conjunction	with	the	<frame>	and	<noframes>	tags
to	create	sets	of	frames	in	a	web	page	that	contained	other	documents,	but	they	have	now
all	been	removed	from	HTML5	in	favor	of	using	the	<iframe>	tag	and	CSS.

<hr>

With	the	<hr>	tag,	you	can	display	a	horizontal	rule	with	which	to	separate	sections	of	a
document.	By	default	the	rule	will	be	the	width	of	the	page,	but	you	can	change	this	by
supplying	different	values	to	its	width	attribute,	like	this	(which	creates	rules	of	100
percent	of	the	parent	object,	75	percent,	and	100	pixels):

In	HTML5,	however,	the	<hr>	tag	is	used	thematically	instead	of	as	an	actual	rule,	so
the	width	attribute	is	obsolete,	even	though	most	browsers	will	still	display	a	horizontal
rule.	So	let’s	call	this	element	half-deprecated,	and	maybe	choose	to	use	other	tags	and
CSS	instead—unless	you	intend	to	use	it	in	its	semantic	context,	in	which	case	it’s	fine.

<iframe>	…	</iframe>
Using	this	tag,	you	can	load	another	document	into	the	current	one,	displaying	it	within	a
frame	with	dimensions	that	you	supply,	like	this:
<iframe	src=′http://somesite.com′	width=′300′	height=′150′></iframe>

For	browsers	that	don’t	support	inline	frames,	you	can	place	text	between	the	opening
and	closing	tags	that	only	they	will	display.

<isindex>	…	</isindex>	(Obsolete)
This	tag	used	to	provide	a	single-line	text-input	that	would	be	sent	to	the	server	for
returning	a	list	of	pages	matching	the	query.	However,	it	was	almost	never	used	and	is
now	obsolete	because	you	can	do	the	same	thing	using	<input>	fields	as	detailed	in
Lesson	6.

<menu>	…	</menu>	(Reserved)
This	tag	used	to	specify	a	clickable	menu,	but	it	was	deprecated	in	HTML4	and	it	is
recommended	that	you	use	CSS	instead,	or	simply	place	links	in	an	ordered	or	unordered
list.	In	HTML5,	however,	<menu>	is	back	to	represent	a	list	of	commands,	but	it	is	not	yet
supported	by	any	browsers	at	the	time	of	writing.

<optgroup>	…	</optgroup>
When	you	wish	to	create	groups	of	options	within	a	<select>	element,	you	use	the
<optgroup>	tag,	which	requires	a	label	attribute	to	be	supplied	that	gives	the	group	a	title.
You	can	then	use	the	<option>	tag	as	you	normally	would	to	list	the	options	for	that
group.	The	left-hand	drop-down	menu	in	Figure	7-6	is	the	result	of	the	following	HTML
and	does	not	use	<optgroup>:

http://somesite.com

FIGURE	7-6	Using	<option>	tags	in	a	<select>	element

The	right-hand	drop-down	menu	in	Figure	7-6	was	created	with	the	following	HTML,
which	employs	the	<optgroup>	tag	twice:

_…	and	[…]
With	the	<sub>	tag,	you	can	display	text	in	a	smaller	subscript	font,	while	the	<sup>	tag
displays	it	at	the	same	small	size	but	in	a	superscript	font,	like	this	(as	shown	in	Figure	7-
7):

FIGURE	7-7	Using	<sup>	and	<sub>	tags	for	super-	and	subscripting

Summary
Congratulations.	You	have	now	completed	the	first	part	of	this	book	consisting	of	an
introduction	to	HTML4,	and	should	now	either	have	a	basic	understanding	of	what	you
can	do	with	it,	or	if	you	already	knew	HTML,	you	have	refreshed	all	its	tags	in	your	mind.

In	the	following	lesson	we’ll	start	to	get	into	the	nitty-gritty	of	HTML5	and	learn
exactly	what	the	fuss	is	all	about.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	over	the	relevant	section	until	your	knowledge	is	complete.	You	can	find
the	answers	in	the	appendix.

1.			Which	HTML	tags	let	you	use	an	image	map	on	an	image?

2.			How	can	you	denote	text	as	a	citation?

3.			How	can	you	change	the	direction	of	text	flow	from	left-to-right	to	right-to-
left?

4.			What	is	The	Mark	of	the	Web?

5.			Which	tag	displays	text	as	if	it	has	been	deleted?

6.			Which	tag	displays	text	as	if	it	has	been	inserted?

7.			How	can	you	display	text	in	a	superscript	font?

8.			What	HTML	tag	is	a	good	way	to	display	short	quotations?

9.			Which	HTML	tag	is	best	for	displaying	long	quotations?

10.			Which	HTML	tag	displays	preformatted	text?

PART	II

HTML5	and	the	Canvas

H

What’s	New	in	HTML5

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

TML5	is	a	specification	that’s	still	under	development	(because	a	number	of	HTML5
features	are	still	only	sparsely	implemented	in	some	major	browsers)	even	though	the

final	draft	was	submitted	in	2013.	Therefore	it’s	important	for	you	to	know	about	all	the
tags	(both	current	and	future),	and	how	they	work	on	various	platforms	and	browsers,	so
that	you	will	know	just	what	you	can	do	with	HTML5	right	now,	and	also	what	might
become	available	to	you	in	the	future.

But	what	exactly	is	HTML5?	Is	it	a	new	standard	different	from	the	previous	4.01
version?	Surprisingly,	the	answer	is	no,	because	HTML5	is	simply	a	loose	collection	of
enhancements	that	have	been	(or	will	be)	made	to	the	HTML	4.01	specification,	covering
a	wide	range	of	differing	areas;	it	has	simply	been	found	convenient	to	label	these
additions	as	HTML5.

This	is	why	I	made	sure	that	you	had	a	thorough	grounding	in	HTML	4.01	before
beginning	this	section,	because	that	means	that	you	now	actually	already	have	over	75
percent	of	the	full	HTML5	specification	under	your	belt.	Now	you’ll	start	to	look	at	the
remaining	25	percent	or	so	that	constitutes	the	HTML5	enhancements.

When	an	older	browser	comes	across	an	HTML5	tag	that	it	doesn’t	recognize,	the	tag	will	simply	be	ignored,
in	the	same	way	as	if	you	use	made-up	tag	names	such	as	<newtagname>	and	</newtagname>.	However,	any	text
or	HTML	between	such	tags	is	displayed.	This	ensures	that	backward	compatibility	is	retained	for	users	with
older	browsers.

The	Canvas
The	<canvas>	element	was	introduced	by	Apple	to	the	Webkit	rendering	engine	(the
power	behind	the	default	iOS	and	Android	web	browsers,	and	also	used	by	Safari,	Opera,
and	Chrome),	to	provide	a	means	of	drawing	graphics	from	within	a	web	page,	without
having	to	load	a	plug-in	such	as	Java	or	Flash.	It	was	later	standardized	and	has	since	been
adopted	by	Opera	and	Gecko-based	browsers,	as	used	in	the	Mozilla	Firefox	browser,	and
is	also	included	in	Google	Chrome	and	Microsoft	Internet	Explorer	9.

A	canvas	is	a	region	within	a	web	page	that	can	be	drawn	on	using	JavaScript.	As
there	can	be	more	than	one	canvas	in	a	web	page,	it	is	necessary	to	provide	an	ID	for	each
so	that	the	drawing	commands	know	which	canvas	they	should	apply	to.	So,	to	create	a
canvas,	you	use	HTML	such	as	the	following,	which	creates	a	400×300-pixel	canvas	with

http://www.mhprofessional.com/nixonhtml5

the	ID	canvas1:

This	is	a	book	on	HTML5.	However,	many	HTML5	features	can	only	be	accessed	using	JavaScript.	Therefore
in	these	lessons	I	provide	illustrations	of	how	to	perform	certain	functions	and	give	examples	in	JavaScript,	but	I
do	not	teach	the	JavaScript	language	itself.	You	will	be	able	to	use	and	modify	the	examples	since	they	are	simple
and	clearly	explained,	but	if	you	wish	to	achieve	more	complex	results	in	JavaScript	and	other	web	development
technologies,	you	may	wish	to	read	my	other	books	in	this	series	of	20	Lessons	to	Successful	Web	Development
on	CSS,	JavaScript,	and	PHP.

Older	browsers	that	do	not	recognize	the	<canvas>	tag	will	ignore	it	and	simply
display	the	text	between	the	opening	and	closing	tag,	which,	in	this	instance,	provides
information	to	users	about	upgrading	their	browser.

The	great	thing	about	the	HTML5	canvas	is	that	you	can	now	draw	anything	you	like
in	a	web	browser,	in	a	similar	way	to	using	a	plug-in	such	as	Flash,	but	using	simple
HTML	and	JavaScript	syntax.	This	makes	your	web	pages	far	more	dynamic	and	able	to
display	on	a	wider	range	of	operating	systems	and	devices.	For	example,	the	iOS
infrastructure	does	not	support	Flash	on	iPhones	and	iPads,	but	does	support	the	HTML5
canvas.

In	Figure	8-1	I	have	created	a	400×300-pixel	canvas	and	drawn	a	square	in	its	center
using	the	following	combination	of	HTML	and	JavaScript:

FIGURE	8-1	A	100×100-pixel	square	in	a	400×300-pixel	canvas

The	first	part	of	this	example	is	a	repeat	of	the	HTML	snippet	that	creates	the
<canvas>,	and	the	four	lines	within	the	<script>	and	</script>	tags	do	the	work	of
placing	the	square	on	the	canvas.	Let’s	look	at	them	in	turn,	starting	with:
canvas	=	document.getElementById(′canvas1′)

This	creates	a	JavaScript	object	(an	element	capable	of	holding	different	types	of
information),	which	refers	to	the	canvas1	canvas.	In	the	following	line	the	background	of
the	canvas	is	set	to	a	light	gray	color	(#ddd)	by	altering	its	CSS	style	property:
canvas.style.background	=	′#ddd′

Next	it	is	necessary	to	decide	the	way	in	which	the	canvas	is	to	be	accessed.	For
example,	in	the	future	it	will	be	possible	to	access	a	canvas	using	3D,	which	will	make	it
possible	to	write	professional-looking	games.	But	for	now	2D	is	the	only	option	available,
and	that	is	what	I	have	used,	as	follows:
context	=	canvas.getContext(′2d′)

Finally,	a	square	is	drawn	on	the	canvas	by	using	the	context	and	the	JavaScript
function	fillRect().	The	square	has	its	top-left	corner	at	150	pixels	in	by	100	down	and
has	a	width	and	height	that	are	both	100	pixels:
context.fillRect(150,	100,	100,	100)

As	you	can	see,	even	if	you	are	not	a	JavaScript	programmer,	this	is	relatively
straightforward,	and	will	become	more	so	when	I	explain	the	canvas	element	in	more
detail	in	Lessons	9	and	10.	In	the	meantime,	Figure	8-2	shows	the	addition	of	a	circle	and
some	text	to	the	canvas,	achieved	using	the	following	extra	statements	added	into	the
<script>	section	of	the	example:

FIGURE	8-2	A	circle	and	some	text	have	been	added	to	the	canvas.

Geolocation
Geolocation	is	a	technology	that	is	used	to	determine	the	location	of	a	computer	or	mobile
device,	which	can	be	returned	to	the	web	server	in	order	to	provide	relevant	information.
For	example,	a	local	map	can	be	displayed,	or	details	of	local	stores	such	as	restaurants	or
gas	stations	can	be	provided.

Geolocation	can	also	be	used	to	help	improve	web	connectivity	by	notifying	you	of
nearby	Wi-Fi	access	points,	or	to	alert	you	of	the	proximity	of	friends,	acquaintances,	or
colleagues.

Different	methods	are	used	to	obtain	your	location,	starting	with	your	IP	(Internet
Protocol)	address,	which	can	reveal	which	country	you	are	in,	and	programs	that	do	this
can	often	get	very	close	to	your	locality.	There’s	nothing	you	can	normally	do	about	this
because	all	websites	need	to	know	your	IP	address	in	order	to	send	you	data.	However,
there	are	third-party	services	that	will	act	as	a	proxy	for	you,	replacing	your	IP	address
with	theirs	when	communicating	with	a	web	server.

With	HTML5	geolocation,	if	Wi-Fi	is	enabled	on	your	computer,	it	is	also	possible	to
send	more	precise	location	information	by	scanning	your	locally	accessible	Wi-Fi	hotspots
to	pinpoint	your	location,	using	databases	containing	millions	of	hotspot	names	and	MAC
(Media	Access	Control)	addresses,	along	with	their	locations.

Also,	if	you	are	using	a	mobile	device,	triangulation	of	the	mobile	antenna	masts	you

can	connect	to	reveals	your	location	quite	accurately.	Finally,	if	your	computer	has	GPS
(Global	Positioning	System)	functionality,	this	can	reveal	your	exact	location	to	within
just	a	few	feet,	as	long	as	your	device	is	in	range	of	the	GPS	satellites	that	orbit	the	earth.

In	Figure	8-3	permission	has	been	granted	by	the	user	to	return	the	geolocation	data	of
a	device	at	the	location	40.689167,	-74.044444,	which	is	a	point	close	to	the	Statue	of
Liberty	in	New	York	City,	USA.

FIGURE	8-3	A	map	is	displayed	as	a	result	of	returning	geolocation	data.

Geolocation	is	explained	in	greater	depth	in	Lesson	15,	and	JavaScript	code	is
supplied,	which	you	can	use	without	needing	to	learn	the	entire	language.

Forms
Forms	have	been	provided	with	a	number	of	new	enhancements	in	HTML5,	and	in	my
view	they	are	long	overdue	(and	still	only	partially	supported	by	some	browsers).

To	start	with,	you	can	now	place	<input>	tags	outside	of	<form>	and	</form>	tags	as
long	as	the	new	form	attribute	is	used	to	identify	the	form	ID	to	which	the	input	refers.
Similarly,	you	can	change	the	method	(either	Get	or	Post)	of	a	form	with	the	new
formmethod	attribute.

There	are	also	enhancements	letting	you	change	the	encoding	type	of	a	form,	or	create
or	override	the	new	formnovalidate	attribute.	You	can	also	use	the	formaction	attribute
to	change	the	action	(destination)	of	a	form,	and	you	can	use	formtarget	to	change	the
target	frame,	tab,	or	window.	At	the	same	time,	it	is	now	possible	to	change	the	height	and

width	of	the	image	type	of	the	<input>	tag	using	height	and	width	attributes.

Two	particularly	handy	new	attributes	are	autocomplete	and	autofocus.	The	former
allows	previously	entered	values	for	a	field	to	be	offered	as	suggested	values,	while	the
latter	is	used	to	tell	the	browser	to	automatically	focus	on	a	particular	form	field	ready	for
input.	This	is	what	happens	when	you	go	to	a	search	engine	such	as	Google	(see	Figure	8-
4),	where	you	can	begin	to	enter	your	search	immediately.	In	the	good	old	days	before	the
use	of	these	tags	and	JavaScript,	you	had	to	click	in	a	field	first	before	it	would	obtain
focus,	and	you	would	not	be	offered	suggestions	as	you	typed.

FIGURE	8-4	Google	supports	autofocus	and	autocompletion.

Data	lists	can	also	now	be	included	in	a	form	such	that	you	can	create	a	list	of	labels
and	values	to	which	you	assign	an	ID.	Then	you	can	use	that	ID	as	the	value	for	the	new
list	attribute	to	easily	offer	a	selection	of	choices	to	an	input.	This	is	especially	useful
when	you	wish	to	use	the	same	list	more	than	once	as	it	avoids	unnecessarily	duplicating
it.

New	min,	max,	and	step	attributes	have	also	been	added	for	inputs	that	contain
numbers	or	dates,	and	there’s	a	new	multiple	attribute	with	which	you	can	allow	an
<input>	tag	to	accept	multiple	values.	This	is	especially	useful,	for	example,	when
selecting	groups	of	files	to	upload	to	a	server.

Pattern	matching	is	now	supported	in	forms	via	the	new	pattern	attribute,	the
placeholder	attribute	lets	you	display	some	hint	text	in	a	field	that	disappears	once	the
field	is	selected,	and	you	can	use	the	required	attribute	to	tell	a	form	that	a	field	must	be
completed.

Several	new	values	are	now	supported	for	the	type	attribute,	including	color,	date,

month,	time,	week,	number,	range,	tel,	url,	and	email.	These	allow	the	browser	to	check
such	input	fields	for	proper	syntax	and	sensible	data	being	entered.	There’s	also	a
powerful	search	type	value,	which	enables	a	field	to	provide	search	suggestions	in	a
similar	fashion	to	the	instant	results	that	appear	when	entering	a	request	into	the	Google
search	engine.

All	these	values	and	more	are	fully	detailed	in	Lesson	16.

Local	Storage
Before	HTML5,	the	only	way	that	data	could	be	stored	on	a	local	device	was	via	the	use
of	cookies,	which	are	small	bundles	of	data	generally	used	to	help	retain	the	contents	of	a
shopping	basket,	or	more	controversially,	by	advertising	websites	to	track	your	browsing.

But	it	has	long	been	realized	that	the	web	could	be	significantly	sped	up	if	a	local	data
store	were	made	available	that	could	be	used,	for	example,	for	storing	longer	documents
as	you	edit	them,	prior	to	them	being	sent	to	the	server	for	safekeeping.	With	HTML5	this
is	possible,	and	even	large	chunks	of	data	(up	to	5MB	per	website)	can	be	stored	locally,
but	only	if	the	user	agrees	to	it,	so	you	retain	full	control.

What’s	more,	on	some	browsers	local	storage	can	be	accessed	like	a	database	using
Web	SQL,	providing	the	possibility	of	creating	advanced	local	web	apps	for	handling	data
such	as	your	music	collection,	or	personal	exercising	and	dieting,	and	so	on.

Lesson	17	fully	explains	what	you	can	and	can’t	do	with	local	storage.

Audio	and	Video
Possibly	the	most	interesting	and	popular	enhancements	in	HTML5	(other	than	the
canvas)	are	the	ability	to	now	play	audio	and	video	directly	from	within	HTML,	with	no
need	to	embed	Flash	or	any	other	type	of	object	as	a	player.

To	do	this,	the	new	tags	<audio>	and	<video>	have	been	provided,	but	how	to	use
them	is	still	a	bit	up	in	the	air	as	it	can	depend	on	the	browser	and	operating	system	being
used.	In	addition	there	has	been	a	big	hoo-ha	going	on	about	the	use	of	the	H.264	video
codec	(the	software	algorithm	used	to	compress	all	the	video	data	down	to	a	manageable
size	for	the	Internet),	which	is	not	free	for	products	that	encode	or	decode	the	video	(such
as	browsers),	although	it	is	free	for	end	users.

Because	of	this,	different	browsers	support	different	codecs,	but	there	are
workarounds	and	tweaks	you	can	employ	to	ensure	that	just	about	all	your	users	can	play
HTML5	audio	and	video,	and	all	of	this	is	explained	in	Lessons	18	and	19.

The	<embed>	Tag
While	on	the	subject	of	embedding	objects	(such	as	video	players)	in	a	web	page,	the
<embed>	tag,	which	was	officially	deprecated	in	HTML	4.01,	has	now	been	restored	and
made	official	again.	Therefore,	for	example,	you	can	officially	use	code	such	as	the

following	to	play	a	YouTube	video	in	a	non-HTML5	browser	using	Flash:

Code	such	as	this	can	be	inserted	between	<video>	and	</video>	tags	so	that
browsers	that	do	not	recognize	them	will	use	Flash	to	display	a	video,	as	shown	in	Figure
8-5.

FIGURE	8-5	Embedding	a	YouTube	Flash	video

Microdata
Microdata	is	a	subset	of	HTML	designed	for	making	a	document	have	meaning	to
machines	by	providing	metadata,	just	as	it	has	meaning	to	a	reader	of	the	document.

What	it	does	is	make	available	the	following	new	tag	attributes:	itemscope,	itemtype,
itemid,	itemref,	and	itemprop.	Using	them	you	will	be	able	to	clearly	define	the
properties	of	an	item	such	as	a	book,	providing	a	range	of	information	that	a	computer	can

use	to	understand,	for	example,	its	authors,	publishers,	contents,	and	so	on.	Further
information	on	microdata	is	in	Lesson	20.

Web	Workers
Normally,	to	achieve	background	processing	in	JavaScript,	you	need	to	set	up	a	timer	that
is	constantly	called,	supplying	slices	of	processor	time	to	one	or	more	functions,	and	these
functions	must	then	quickly	do	a	small	piece	of	work	and	return,	in	order	to	not	slow
down	the	browser	and	make	it	seem	sluggish.

Web	workers	are	not	yet	widely	implemented	but	will	provide	a	standard	way	for
browsers	to	run	multiple	JavaScript	threads	in	the	background	that	can	pass	messages	to
each	other,	in	much	the	same	manner	as	the	threads	running	in	an	operating	system.	You
will	simply	call	up	a	new	worker	script,	which	will	sit	there	in	the	background	waiting	for
messages	to	be	sent	to	it,	which	it	will	then	act	upon.

On	the	whole	the	aim	of	this	is	to	achieve	a	speed	increase	of	two	to	three	times	over
regular	background	JavaScripts,	although	getting	to	grips	with	programming	them	is	likely
to	require	a	steeper	learning	curve.	Lesson	20	discusses	web	workers	in	more	detail.

Web	Applications
The	idea	of	offline	web	applications	is	that	once	you	visit	a	website,	it	tells	your	browser
about	all	the	files	it	uses	so	that	the	browser	can	download	them	all	and	you	can	then	run
the	web	application	locally,	even	without	an	Internet	connection.

There	is	a	complication	with	web	applications	in	that	they	require	a	web	server	to	set
up	with	the	correct	MIME	types	(originally	known	as	Multipurpose	Internet	Mail
Extensions,	but	the	word	Mail	has	since	been	replaced	with	Media),	in	order	for	a	browser
that	understands	web	applications	to	make	use	of	the	feature	and	fetch	the	files	it	needs.
Lesson	20	goes	into	web	applications	in	greater	detail.

Still	to	Come
There	are	a	number	of	other	new	HTML5	tags	that	have	not	yet	been	implemented	in	any
browser,	and	which	I	therefore	won’t	detail	(particularly	since	their	specs	could	change).

But,	for	the	sake	of	completeness,	these	tags	are:	<article>,	<aside>,	<details>,
<figcaption>,	<figure>,	<footer>,	<header>,	<hgroup>,	<keygen>,	<mark>,
<menuitem>,	<meter>,	<nav>,	<output>,	<progress>,	<rp>,	<rt>,	<ruby>,	<section>,
<summary>,	<time>,	and	<wbr>.	You	can	get	more	information	on	these	and	all	other
HTML5	tags	at	dev.w3.org/html5/markup.

Summary
This	lesson	has	introduced	you	to	all	the	new	goodies	in	HTML5.	In	the	following	lessons
I	will	explain	each	of	these	main	areas	in	depth	so	that	you	can	begin	to	use	the	tags	that

have	been	widely	supported	in	your	own	web	pages,	and	will	be	prepared	to	also	include
the	lesser-supported	ones	as	browsers	pick	them	up.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			Which	tag	is	used	to	create	an	HTML5	canvas?

2.			What	happens	with	the	canvas	in	non-HTML5	compatible	browsers?

3.			Which	JavaScript	function	is	used	to	fetch	an	object	with	which	to	access	an
element	such	as	a	canvas?

4.			What	does	the	acronym	GPS	stand	for?

5.			Which	new	HTML5	technology	is	superior	to	cookies?

6.			Which	two	new	tags	have	been	added	to	HTML5	to	handle	multimedia?

7.			What	HTML	tag	is	used	to	allow	fallback	to	Flash	for	playing	media?

8.			What	new	HTML5	technology	helps	provide	additional	information	about	the
contents	of	a	document?

9.			Which	new	HTML5	technology	lets	the	programmer	offload	background
JavaScript	tasks	to	be	handled	by	the	web	browser?

10.			What	did	the	acronym	MIME	stand	for,	and	what	does	it	stand	for
nowadays?

T

Accessing	the	Canvas

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

here	are	no	two	ways	around	it.	If	I’m	going	to	show	you	how	to	use	the	HTML5
canvas,	then	I’m	also	going	to	have	to	give	you	an	ultra-crash	course	on	JavaScript,	or

at	least	on	those	aspects	of	it	required	for	manipulating	the	canvas.

So	here	goes	(if	you	already	know	JavaScript,	you	can	briefly	skim	the	following
section,	before	moving	on	to	the	“Accessing	the	Canvas	with	JavaScript”	section).

An	Ultra-Crash	Course	in	JavaScript
Although	I’m	going	to	teach	you	a	few	parts	of	JavaScript,	it	is	by	no	means	the	entire
language,	but	it	will	be	just	sufficient	for	you	to	complement	your	use	of	HTML	for
manipulating	the	canvas.	Along	the	way	I	also	touch	upon	a	few	elements	of	CSS
(Cascading	Style	Sheets)	too.

JavaScript	was	created	to	allow	you	to	directly	access	various	parts	of	the	HTML
DOM	(Document	Object	Model).	To	explain	the	DOM,	take	a	look	at	the	following
example	web	page:

This	is	a	simple	page	that	displays	a	link	to	the	Yahoo!	website	and	has	a	form
underneath	that	submits	a	username	to	a	PHP	script	with	the	filename	form.php.	Beneath
that	an	image	is	included.	In	terms	of	this	web	page’s	DOM,	it	looks	something	like
Figure	9-1,	in	which	the	entire	content	is	contained	within	<html>	and	</html>	tags.

http://www.mhprofessional.com/nixonhtml5

FIGURE	9-1	The	DOM	of	the	preceding	HTML	example

Looking	at	the	<head>	section	in	Figure	9-1,	you	can	see	that	there	are	two	elements.
The	first	is	the	document’s	title	of	Example,	contained	within	<title>	and	</title>	tags,
while	the	second	is	the	meta	tag,	which	tells	search	engine	crawlers	that	the	document
may	be	crawled,	its	contents	indexed,	and	any	links	can	be	followed.	This	is	done	by
passing	the	value	robots	to	the	name	attribute,	and	index,	follow	to	the	content
attribute.	Meta	tags	are	self-closing	(empty)	so	there	is	no	</meta>	tag.	The	section	is	then
closed	with	a	</head>	tag.

To	the	right	of	the	figure	is	the	body	of	the	document,	which	is	contained	within
<body>	and	</body>	tags.	There	are	three	elements	in	this	section,	a	link	to	yahoo.com	in
<a>	and		tags,	an	embedded	image	that	uses	a	self-closing		tag,	and	a	form
contained	within	<form>	and	</form>	tags.

The	form	assigns	the	value	login	to	the	id	attribute,	post	to	the	method	attribute,	and
the	program	name	form.php	to	the	action	attribute.	This	is	the	program	that	is	to	process
the	form	when	it	is	submitted.	The	opening	<form>	tag	is	then	closed,	and	inside	the	form
there	are	two	self-closing	<input>	tags.	The	first	passes	the	value	name	to	the	name
attribute,	the	value	text	to	the	type	attribute,	and	the	value	jane	to	the	name	attribute.
This	prepopulates	the	input	field	with	the	word	jane,	but	it	can	be	altered	by	the	user.

After	this	a	second	<input>	tag	creates	a	submit	button	by	passing	the	value	submit	to
its	type	attribute.	Finally	the	form	is	closed	with	a	</form>	tag.

When	opened	in	a	browser,	the	document	looks	something	like	Figure	9-2.

FIGURE	9-2	The	result	of	displaying	the	example	web	page

Accessing	Form	Elements	from	JavaScript
Now	let’s	look	at	how	these	elements	can	be	manipulated	from	JavaScript,	which	should
always	be	placed	within	<script>	and	</script>	tags.	For	example,	the	following	code
changes	the	document’s	title	from	Example	to	This	is	an	example	web	page:

This	has	the	same	effect	as	if	you	opened	the	document	and	went	straight	in	and
edited	the	title	within	the	<title>	and	</title>	tags	yourself.	See	how	easy	JavaScript
is?

Similarly	the	form	method	type	of	post	is	easily	changed	to	get,	like	this:

Here	the	JavaScript	references	first	the	document,	then	the	forms	within	that
document,	then	the	form	with	the	id	of	login	and	its	method,	which	is	then	modified.

Using	the	getElementById()	Function
In	the	previous	two	examples	I	showed	you	how	to	access	parts	of	a	document	by	their
type,	but	there’s	a	far,	far	easier	method,	which	is	to	give	every	element	in	a	document	a
unique	id,	and	then	to	access	them	from	JavaScript	using	just	those	ids.

For	example,	if	the		tag	is	given	an	id	(such	as	image1)	with	which	it	can	be

identified,	it’s	possible	to	replace	the	image	loaded	by	it	with	another,	like	the	following,
in	which	the	male-shaped	dad.jpg	image	is	replaced	with	mom.jpg	to	match	the	default
name	in	the	form	field	of	jane:

The	trick	here	is	to	use	the	JavaScript	function	getElementById(),	which	will	let	you
access	any	DOM	element	that	has	been	given	a	unique	id.

So	let’s	look	at	another	example	by	restoring	the	name	and	image	mismatch	by
altering	the	default	name	value.	If	we	were	to	use	the	initial	example	in	this	section,	we
would	have	to	access	the	element	via	document.forms.login,	and	so	on,	but	by	giving	the
form	field	an	id	(for	example	of	name)	and	using	getElementById(),	we	can	avoid	all	that
and	go	straight	to	the	element	to	change	it,	like	this	(in	which	I	have	shown	only	the
changed	<input>	tag	and	not	the	remainder	of	the	HTML,	which	remains	unchanged):

See	how	much	easier	it	is	than	having	to	remember	whether	an	element	is	part	of	a
form,	an	image,	or	something	else?	All	you	have	to	do	is	know	the	name	of	an	element
and	getElementById()	will	do	the	job	of	finding	it	for	you.	Figure	9-3	shows	how	the
web	page	now	displays	after	these	changes.	The	title	is	different,	the	default	input	value	is
′mike′,	and	the	image	shown	is	mom.jpg	(yes,	the	gender	is	all	confused	again).

FIGURE	9-3	Three	elements	of	the	page	have	been	modified	with	JavaScript.

The	Simpler	O()	Function
I	use	the	getElementById()	function	so	often	that	I	always	create	a	simple	function	called
O()	(with	an	uppercase	O)	to	make	it	easier	to	type	in.	The	function	looks	like	this	and	I
simply	place	it	anywhere	in	a	section	of	JavaScript,	like	this	(highlighted	in	bold):

Doing	this	saves	22	characters	of	typing	each	time	the	replacement	O()	function	is
used	instead	of	the	longer	one.	One	reason	for	the	tremendous	shortening	is	that	the
preceding	document	keyword	has	also	been	incorporated	into	the	O()	function,	saving	on
typing	that	in	too.

In	JavaScript	tutorials	on	the	Web	and	in	books,	you	may	see	functions	referred	to	either	by	the	term	function,
or	using	the	term	method,	but	they	both	mean	the	same	thing:	a	set	of	instructions	grouped	together,	which	can
receive	one	or	more	values	and	then	return	a	value	upon	completion.

However,	there’s	one	further	step	I	like	to	take	that	makes	the	function	even	more
useful	and	that’s	to	allow	the	passing	to	it	of	either	element	IDs	(which	is	what	it	does	so
far),	or	an	object	that	is	the	result	of	having	called	the	O()	function.

Let	me	explain	it	like	this.	Instead	of	directly	manipulating	the	value	of	the	form	input
with	the	id	of	name	directly,	let’s	first	create	what	is	called	an	object	from	this	element,
like	this:
newobject	=	O(′name′)

Now	that	I	have	this	object,	I	can	access	it	several	times	without	ever	having	to	call
the	O()	function	again,	like	this	(in	which	the	value	is	changed	on	separate	occasions):

Now,	whenever	I	wish	to	refer	to	the	element	in	question,	I	can	simply	use	the	object
that	I	created.	But	now,	what	if	I	want	to	change	the	style	property	of	an	object?	Because
the	S()	function	I	created	for	this	(shown	after	this	paragraph)	calls	the	O()	function,	and
that	only	supports	id	names,	then	the	only	way	to	do	this	is	to	go	back	to	using	a	call	such
as	this	(to	make	the	input	exactly	150	pixels	wide):
S(′name′).width	=	′150px′

But	I	have	been	using	the	object	newobject,	and	for	the	sake	of	consistency,	I	would
prefer	to	pass	that	to	the	S()	function.	To	enable	this,	all	that’s	necessary	is	to	allow	the
O()	function	to	be	passed	either	an	object	or	an	id,	so	the	argument	passed	in	obj	is
analyzed	by	the	code	and	if	it	happens	to	already	be	of	the	type	object,	then	the	object	is
simply	returned,	because	it	is	already	an	object.

But	if	it	is	not	of	that	type,	then	it	must	be	an	id	name,	in	which	case	it	is	looked	up
and	returned	as	an	object	with	a	call	to	getElementById().

If	this	confuses	you,	don’t	worry.	You	don’t	need	to	learn	JavaScript,	or	(indeed)	understand	fully	the
workings	of	these	snippets	of	code,	in	order	to	use	the	following	examples	to	access	the	HTML5	canvas.

The	Partner	S()	Function
In	a	similar	fashion	to	the	savings	produced	by	using	the	O()	function,	there	is	one	other
that	I	employ	frequently	because	it	is	also	used	all	the	time	in	JavaScript,	and	that’s	the
new	function	S()	(with	an	uppercase	S).	This	is	used	to	enable	JavaScript	to	easily	access
any	style	attribute	of	any	element.

For	example,	if	I	wish	to	change	the	width	and	height	of	the	image,	I	can	do	it	like	this
(which	results	in	Figure	9-4,	when	the	other	lines	of	HTML	and	JavaScript	we’ve	been
using	are	included):

FIGURE	9-4	The	mom.jpg	image	has	been	reduced	in	size.

The	//	characters	create	a	comment	to	the	end	of	the	line,	which	I	have	used	in	the	preceding	example	to
comment	each	of	the	final	two	lines	within	the	script	(that	the	second	version	of	syntax	is	shorter	than	the	first).

What	I’ve	done	here	is	simply	make	the	S()	function	place	a	call	to	the	O()	function
but	with	an	added	.style	suffix,	and	now	I	can	use	O()	for	accessing	elements	by	name,
and	S()	for	accessing	the	style	attributes	of	elements	by	name.

Believe	it	or	not,	these	two	functions	alone	provide	you	with	a	huge	amount	of	scope
and	power	to	modify	any	part	of	a	document,	without	learning	the	JavaScript	language.
All	you	need	to	remember	to	do	is	include	the	O()	and	S()	functions	somewhere	in	a
script	in	any	document	that	will	refer	to	them.	Then,	whenever	you	need	to	use	these
functions,	open	up	a	new	<script>	tag	and	access	them,	like	this:

This	works	because	you	are	allowed	to	enter	<script>	tags	as	many	times	as	you	like
in	a	document—there	is	no	requirement	to	keep	all	your	JavaScript	code	within	a	single
set	of	<script>	and	</script>	tags,	although	you	may	do	so	if	you	wish.

Alternatively,	if	you	would	like	to	create	an	object	on	the	first	call	to	the	O()	function,
and	then	reference	that	instead,	the	preceding	code	might	look	like	this:

This	code	can	be	quicker	as	the	object	is	only	looked	up	once,	and	is	therefore	a	more
efficient	way	to	code	when	an	element	may	be	accessed	more	than	once.	By	the	way,	the

reason	myimage	does	not	have	quotation	marks	around	it	is	because	it	is	an	object,	not	an
id	value	that	is	a	string.

I	use	the	functions	O()	and	S()	extensively	throughout	this	book,	so	I	recommend	you	get	comfortable	with
them	by	downloading	the	examples	from	the	companion	website	and	then	playing	with	them	until	you	feel	you
have	mastered	their	use.

The	<canvas>	Tag
With	that	little	(but	necessary)	preamble	over,	now	we	can	get	down	to	directly
manipulating	an	HTML5	canvas.	As	you	may	recall	from	Lesson	8,	the	following	code
creates	a	canvas	and	places	a	square	in	its	center	(and	results	in	Figure	9-5):

FIGURE	9-5	Drawing	a	black	square	on	a	gray	canvas

The	<canvas>	tag	itself	supports	only	two	attributes;	width	and	height,	as	used	in	the
example.	And	it	is	important	that	you	provide	a	unique	identifier	for	each	canvas	you	use,
so	that	you	can	access	them	from	JavaScript.	In	the	example,	the	id	is	given	a	value	of
canvas1.

The	other	thing	to	remember	about	the	<canvas>	tag	is	that	anything	between	it	and
the	closing	</canvas>	tag	is	ignored	by	all	HTML5-compatible	browsers,	and	so	is
displayed	only	by	browsers	that	do	not	recognize	it.	Therefore	this	is	where	you	can	place
text	and/or	HTML	to	inform	users	about	what	they	are	missing	and	perhaps	how	to
upgrade	their	browser.

Accessing	the	Canvas	with	JavaScript
Let’s	look	closely	at	the	code	from	the	previous	example,	as	follows:

Ignoring	the	opening	and	closing	tags,	and	the	O()	and	S()	functions,	the	object
canvas	is	created	by	passing	the	id	of	the	canvas	(canvas1)	to	the	O()	function.

Armed	with	this	object,	the	following	line	passes	it	to	the	S()	function	and	then	sets
its	background	property	to	a	light	gray	(#ddd)	color.	This	is	where	the	power	of	extending
the	O()	function	to	also	support	objects	comes	in	(because	the	S()	function	calls	the	O()
function).	By	virtue	of	this	extension	it	has	been	a	simple	matter	to	pass	the	object	created
from	the	canvas	straight	to	the	S()	function,	allowing	for	far	simpler	and	more	compact
coding.

Next,	to	be	able	to	read	from	and	write	to	the	canvas,	a	context	(with	the	name
context)	is	created	with	which	to	access	it,	using	the	JavaScript	getContext()	function,
which	is	told	to	treat	the	canvas	as	a	two-dimensional	workspace.

Then	the	final	line	uses	this	context	to	create	a	filled	rectangle	at	an	offset	of	150
pixels	horizontally	in	from	the	top-left	corner,	and	100	pixels	vertically	down	from	the
same	corner.	The	rectangle	is	given	a	width	and	height	of	100	pixels,	resulting	in	a	filled,
black	square.

From	now	on,	I	will	be	assuming	that	you	have	placed	the	two	functions	O()	and	S()	within	<script>	and
</script>	tags	somewhere	in	your	document,	and	will	not	be	showing	the	code	for	these	functions	in	any	more
examples.	So	please	ensure	that	you	have	included	them	before	testing	any	examples,	or	they	will	not	work.

Converting	a	Canvas	to	an	Image
Because	of	the	way	the	canvas	is	created,	it	is	not	possible	for	users	to	right-click	and	save
a	copy	to	the	desktop,	for	example.	Likewise,	you	cannot	directly	use	a	canvas	as	an
image.	But	there	is	a	way	you	can	convert	a	canvas	to	what	is	known	as	a	data	URL.	This
displays	as	an	image	and	can	then	be	copied	and/or	saved.

Consider	the	following	code	in	which	a	canvas	is	created	and	then	followed	by	an
image,	which	does	not	have	any	src	attribute:

What	this	code	does	(remember,	it	assumes	you	already	have	the	O()	and	S()
functions	listed	somewhere)	is	identical	to	the	previous	example,	but	there	is	a	new	line	of
code	at	the	end	that	accesses	the	image	using	the	O()	function	and	then	attaches	a	value	to
its	src	attribute,	which	is	gained	by	calling	the	toDataURL()	function	on	the	canvas
object.

The	toDataURL()	function	extracts	the	image	data	from	the	canvas	referred	to	by	the
canvas	object	and	returns	a	string	of	text	in	which	the	canvas	has	been	encoded	as	a
displayable	image,	which	is	interpreted	by	the	browser	and	reconstructed	into	an	image.

When	the	code	is	loaded	into	a	browser,	it	displays	as	Figure	9-6.	Notice	how	the
background	color	of	the	canvas	(which	has	been	applied	only	to	the	canvas	element	and
not	the	contents	of	the	canvas)	is	ignored	by	the	toDataURL()	function,	so	that	when	the
image	data	is	extracted,	you	see	only	the	central	black	square.

FIGURE	9-6	Displaying	a	canvas	and	a	copy	saved	into	an	image

The	imagetype	Argument

When	an	image	is	created	from	a	canvas,	you	can	choose	the	type	of	image	to	use	between
a	jpeg	and	png	image	using	the	imagetype	argument,	as	in	the	following	two	examples,
which	are	identical	in	result	since	the	default	image	type	is	png.

Or,	for	a	jpeg	image,	you	can	use	code	such	as	the	following	three	examples,	which
create	a	very	low-quality,	medium-quality,	and	a	very	high-quality	image	by	passing	an
additional	argument	containing	a	value	between	0	(low	quality)	and	1	(high	quality):

Remember	that	the	canvas	object	is	used	to	call	the	toDataURL()	method,	not	the	context	object.	This	is
because	the	latter	is	for	applying	changes	to	the	canvas	using	the	context	rendering	assigned,	while	the	former
refers	to	the	canvas	object	itself.

Uses	for	this	feature	could	be	online	image	manipulation	programs	that	run	in	the
browser	(as	opposed	to	on	a	web	server	somewhere	far	away	from	the	browser),	and
which	returns	a	transformed	or	newly	created	image	ready	for	the	user	to	save	to	their	hard
disk	and	use.	This	means	that	it	is	possible	to	use	the	HTML5	canvas	to	create	a	graphics
program,	like	Photoshop,	that	runs	within	a	browser	and	requires	no	interaction	with	a
web	server.	Therefore	it	could	also	be	turned	into	a	web	app	or	even	a	standalone	app	for	a
mobile	device	like	a	tablet	or	phone.

Summary
Now	that	you	understand	the	basic	elements	of	the	HTML5	canvas,	and	have	the	tools	and
information	required	to	use	it,	in	the	following	lesson	I	explain	in	depth	how	to	use	each
aspect	of	the	features	available	for	writing	to	a	canvas,	including	drawing	lines,	rectangles,
and	circles;	changing	colors;	using	pattern	and	gradient	fills;	writing	text;	changing	font
face;	using	lines,	paths,	and	curves;	applying	images	to	a	canvas;	adding	shadows;	direct
pixel	manipulation;	compositing	and	transparency;	transformations	and	translations,	and
more.	By	the	time	you	complete	the	next	lesson,	you	will	be	an	expert	at	using	the	HTML
canvas.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			What	is	the	DOM?

2.			What	JavaScript	command	could	you	use	to	change	a	web	document’s	title?

3.			How	can	you	create	a	JavaScript	object	from	an	HTML	element?

4.			What	attribute	must	a	canvas	be	given	in	order	for	JavaScript	to	access	it?

5.			How	can	you	access	an	object’s	style	properties	from	JavaScript?

6.			What	is	the	purpose	of	the	O()	function	in	these	examples?

7.			What	is	the	purpose	of	the	S()	function	in	these	examples?

8.			What	kind	of	object	is	needed	to	be	created	from	a	canvas	object	in	order	for
drawing	functions	to	operate	correctly?

9.			Which	JavaScript	function	is	used	to	copy	canvas	data	into	an	image?

10.			How	can	you	create	a	single-line	comment	in	JavaScript?

N

Creating	Rectangles,	Fills,	Gradients,	and
Patterns

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

ow	that	you’ve	seen	how	to	use	JavaScript	to	access	the	HTML5	canvas,	let’s	look	at
all	the	different	functions	available	for	creating	different	effects,	including	drawing

lines,	rectangles,	and	circles;	changing	colors;	using	pattern	and	gradient	fills;	writing	text;
changing	font	face;	using	lines,	paths	and	curves;	applying	images	to	a	canvas;	adding
shadows;	direct	pixel	manipulation;	compositing	and	transparency;	transformations	and
translations,	and	more.

Drawing	Rectangles
Other	than	drawing	lines	(which	we’ll	get	to	later,	since	they	are	handled	using	paths),
rectangles	are	probably	the	simplest	type	of	object	you	can	draw	on	an	HTML5	canvas,	as
you’ve	already	seen	with	the	fillRect()	function	used	in	a	couple	of	examples.

You	can	also	fill	a	rectangle	with	a	color	other	than	black,	and	you	can	create	unfilled
(or	clear)	rectangles	with	different	border	widths,	line	styles,	and	corners.

Remember	that	JavaScript	functions	are	also	often	referred	to	as	methods,	but	as	the	terms	are
interchangeable,	I	have	selected	to	use	only	the	word	function.

The	fillRect()	Function
We	have	already	explored	the	fillRect()	function;	it	takes	four	arguments	representing
the	vertical	and	horizontal	offsets	of	the	top	left-hand	corner	of	a	rectangle	from	the	top-
left	corner	of	the	canvas,	followed	by	the	rectangle’s	width	and	height,	all	of	which	are	in
units	of	pixels,	or	one	screen	dot.

The	syntax	of	the	function	is	as	follows,	which	creates	a	filled	rectangle	50	pixels
wide	and	70	pixels	high,	at	an	offset	of	20	pixels	in	from	the	left	edge	of	the	canvas	(410
by	170	pixels),	and	30	pixels	down	from	its	top:

http://www.mhprofessional.com/nixonhtml5

This	example	shows	all	the	bits	and	pieces	needed	to	set	up	everything	ready	to	make
the	call	to	fillRect(),	but	for	simplicity	in	the	rest	of	this	lesson,	I	will	show	only	the
relevant	calls	required	for	the	function	or	functions	being	explained,	like	this:
context.fillRect(20,	30,	50,	70)

If	you	are	trying	out	these	examples,	you	must	ensure	that	you	have	first	created	a	suitable	canvas	using	the
<canvas>	and	</canvas>	tags	and	specified	a	suitable	width	and	height	for	it	(with	enough	room	to	display
whatever	is	written	to	the	canvas),	have	entered	the	O()	and	S()	functions	within	any	preceding	pair	of	<script>
and	</script>	tags	(including	the	current	pair),	and	have	created	a	context	for	accessing	the	canvas	called
context.

The	default	color	of	a	filled	rectangle	is	black,	but	you	will	learn	how	to	change	this	in
the	next	section,	or	even	how	to	use	a	gradient	or	a	pattern	to	fill	it	later	in	this	lesson.

The	fillStyle	Property
Using	the	fillstyle	property,	you	can	set	the	type	of	fill	color	to	use,	using	either	short
(three-digit)	or	long	(six-digit)	hexadecimal	colors.	For	example,	to	choose	red	you	can
pass	the	values	#F00	or	#FF0000,	like	this:
context.fillStyle	=	′#F00′

You	may	also	use	any	of	the	HTML	color	names	(listed	in	Lesson	4)	such	as	red,
steelblue,	and	so	on,	like	this:
context.fillStyle	=	′red′

Once	selected,	the	color	will	apply	to	all	fill	operations	until	it	is	changed.	For
example,	the	following	pair	of	lines	will	create	a	red	rectangle,	rather	than	a	(default)
black	one:

For	more	information	on	using	colors,	please	refer	to	Lesson	4.

The	clearRect()	Function
If	you	want	to	draw	a	clear	rectangle,	in	which	all	the	RGBA	(Red,	Green,	Blue,	and
Alpha	transparency)	values	of	a	pixel	are	set	to	zero,	you	can	use	the	clearRect()
function,	as	follows:
context.clearRect(20,	30,	50,	70)

This	function	uses	the	same	arguments	as	fillRect(),	namely	the	horizontal	and
vertical	offset	of	the	top	left-hand	corner	of	the	rectangle	from	the	top-left	corner	of	the
canvas,	followed	by	the	width	and	height	of	the	rectangle	to	clear.

The	cleared	area	will	be	stripped	of	all	color,	leaving	only	any	underlying	background
color	that	may	have	been	applied	to	the	<canvas>	tag	(and	which	therefore	is	not	part	of
the	canvas,	but	is	actually	underneath	it).

The	strokeRect()	Function
With	the	strokeRect()	function,	you	can	create	a	rectangle	that	uses	the	current
strokeStyle,	lineWidth,	lineJoin,	and	miterLimit	properties	to	draw	the	border	lines
and	corners	(as	detailed	in	the	“Drawing	Lines”	section	in	Lesson	12),	and	is	used	like
this:
context.strokeRect(20,	30,	50,	70)

The	function	takes	the	same	arguments	as	fillRect(),	namely	the	horizontal	and
vertical	offset	of	the	top	left-hand	corner	of	the	rectangle	from	the	top-left	corner	of	the
canvas,	followed	by	the	width	and	height	of	the	rectangle	to	draw.

It	is	possible	to	apply	these	effects	on	their	own	or	in	combination	with	others,	so	the
following	code	(in	which	I	have	lined	up	the	columns	of	arguments	for	ease	of
comparison)	is	valid	and	results	in	Figure	10-1,	in	which	a	red	outer	square	created	using
fillRect()	has	a	clear	one	drawn	over	it	using	clearRect()	(because	it’s	clear	all	you
see	is	a	thick-lined	outer	rectangle—the	inner	area	of	which	has	been	cleared).	Within	the
clear	square	is	another	lined	rectangle	which	was	created	using	the	strokeRect()
function:

FIGURE	10-1	The	three	types	of	rectangle	drawn	inside	each	other	in	red

I	have	covered	rectangles	before	lines	because	they	are	simpler	to	draw.	As	you	will	see	in	Lesson	12,	lines
must	be	drawn	by	creating	paths	of	locations	that	you	connect	up.	Therefore,	the	properties	that	are	associated
with	lines	and	paths	are	explained	in	that	section,	rather	than	here.

Creating	Gradients
You	saw	how	to	create	a	simple,	filled	rectangle	in	the	previous	section,	but	it’s	also	easy
to	apply	a	variety	of	different	types	of	gradient	to	both	the	fillRect()	function,	as	you’ve
already	seen,	and	the	fill()	function,	which	is	introduced	later	on.

The	createLinearGradient()	Function
The	simplest	type	of	gradient	available	with	the	HTML5	canvas	is	a	default	linear
gradient.	To	create	a	linear	gradient,	you	need	to	specify	the	colors	to	use	and	the	positions
at	which	they	should	change.	For	example,	in	the	following	statement,	the	object
gradient	is	set	to	start	at	the	location	55,10	and	end	at	55,160.
gradient	=	context.createLinearGradient(55,	10,	55,	160)

Why	these	coordinates?	Well,	you	must	specify	the	start	and	end	relative	to	the	entire
canvas,	not	to	the	object	being	filled.	Therefore,	I	will	be	drawing	a	90×150-pixel
rectangle	with	its	top-left	corner	at	location	10,10,	and	then	I	choose	a	start	point	of	55,10,
which	is	halfway	along	the	top	of	the	rectangle,	and	an	end	point	of	55,160,	which	is
halfway	along	the	rectangle’s	bottom	edge.

The	reason	that	the	gradient	start	and	end	locations	are	relative	to	the	canvas	and	not	to	objects	being	filled	is
to	allow	you	greater	subtlety	and	the	ability	to	create	a	gradient	that	covers	the	entire	canvas	(or	as	much	or	little

as	you	like),	and	of	which	only	the	part	existing	underneath	an	object	being	filled	is	revealed.	This,	for	example,
would	enable	you	to	create	a	gradient	that	represents	a	sunset	and	then	draw	the	inside	of	a	car	and	use	the
gradient	fill	on	the	windows	to	reveal	the	correct	parts	of	the	outside	gradient	for	the	positions	of	the	windows.

Now	that	the	linear	gradient	object	is	created,	it	is	necessary	to	choose	the	start	and
end	colors,	as	with	the	following	two	lines,	which	set	an	initial	stop	position	(as	it	is
known)	of	the	color	#FFF	(white),	and	an	end	of	#000	(black).	This	is	achieved	using	the
addColorStop()	function,	which	is	fully	explained	a	little	further	on,	as	follows:

What	these	two	calls	do	is	specify	with	the	first	argument	to	each	the	position	at
which	the	color	is	to	be	applied	(in	this	case	they	are	0	and	1	for	the	start	and	end),	and	the
second	argument	sets	the	color	to	apply	at	each	of	these	positions.	This	gradient	is	then
applied	to	the	current	context	using	the	fillStyle	property,	and	then	a	90×150-pixel
rectangle	is	drawn	using	these	fill	values:

The	result	of	these	commands	looks	like	Figure	10-2,	in	which	you	can	see	the	fill
fade	linearly	from	white	to	black	starting	at	the	top	and	ending	at	the	bottom	of	the
rectangle.

FIGURE	10-2	A	vertically	aligned	linear	gradient	fill

You	can	change	the	start	and	end	coordinates	for	the	fill	to	any	other	locations.	For
example,	in	Figure	10-3	a	second	rectangle	has	been	filled	from	left	to	right	by	choosing
the	following	values	for	the	call	to	createLinearGradient():
gradient	=	context.createLinearGradient(110,	85,	200,	85)

FIGURE	10-3	A	horizontally	filled	rectangular	gradient	has	been	added.

These	coordinates	specify	a	start	point	halfway	down	the	rectangle’s	left	edge,	and	an
end	that	is	halfway	down	its	right	edge,	as	used	by	this	fillRect()	call:
context.fillRect(110,	10,	90,	150)

In	fact,	you	can	choose	any	start	and	end	location	(within	or	without	the	area	to	be
filled)	as,	for	example,	with	this	code,	which	creates	a	diagonal	gradient	from	top	left
(210,10)	to	bottom	right	(300,160),	as	shown	in	Figure	10-4.

FIGURE	10-4	A	new	rectangle	is	added	with	a	diagonal	gradient	fill.

The	createRadialGradient()	Function
You	can	also	create	a	gradient	that	expands	radially.	That	is,	it	starts	at	a	point	and	has	a
certain	radius,	and	then	ends	focused	around	another	point,	with	a	different	(or	the	same)
radius.

For	example,	the	following	call	to	createRadialGradient()	specifies	an	initial

location	at	the	center	of	a	rectangle	and	a	width	of	0	pixels.	The	second	pair	of	coordinates
remains	the	same,	but	with	a	radius	of	45	pixels,	so	that	the	gradient	starts	in	the	center
and	continues	to	the	left	and	right	edges.	As	you	can	see	in	Figure	10-5,	the	top	and
bottom	of	the	rectangle	are	outside	the	radius	and	so	are	provided	with	the	color	applied	to
the	final	stop,	which	is	black:

FIGURE	10-5	The	fourth	rectangle	features	a	radial	gradient.

So	that	you	can	see	the	effect	of	using	start	and/or	end	coordinates	that	are	outside	the
area	being	filled,	I	have	increased	the	radius	of	the	second	part	of	the	gradient	in	Figure
10-6	to	150	pixels,	so	that	it	extends	past	all	the	rectangle’s	edges,	like	this	(as	shown	in
Figure	10-6):
gradient	=	context.createRadialGradient(355,	85,	0,	355,	85,	150)

FIGURE	10-6	The	radius	of	the	gradient	fill	has	been	substantially	increased.

The	second	radius	value	of	150	pixels	creates	a	circle	with	a	diameter	of	300	pixels.	But	note	that	although
this	circle	extends	beyond	the	area	being	filled	and	well	into	the	previous	rectangle,	the	other	rectangle	is	not
affected.	This	is	because	the	gradient	applies	only	to	future	fills,	and	not	to	any	pre-existing	fills.

The	addColorStop()	Function
Now	that	you’ve	seen	how	to	create	two	different	types	of	gradient	fills,	let’s	look	at	how
to	modify	these	to	stretch	areas	of	a	color	and	provide	nonlinear	fills,	and	to	also
incorporate	colors.

The	way	to	do	this	is	to	modify	the	values	passed	to	the	addColorStop()	function,
and	to	add	more	of	them	to	create	in-between	steps.	For	example,	here’s	the	code	that
created	the	first	rectangle	in	Figures	10-2	to	10-6:

The	two	lines	of	importance	are	the	second	and	third,	in	which	the	position	is	either	0
or	1	(for	the	start	and	the	end)	and	the	two	colors	of	#FFF	(for	white)	and	#000	(for	black),
which	I	will	now	change	as	follows,	to	create	the	rectangle	shown	in	Figure	10-7:

FIGURE	10-7	This	linear	gradient	smoothly	changes	from	red	to	yellow.

I	used	both	types	of	color	values	supported	by	the	addColorStop()	function;	a	hexadecimal	string	(in	this
instance	three	digits,	but	it	could	have	been	six),	and	a	color	name	(in	this	case	yellow).

Now	let’s	modify	the	gradient	applied	to	the	second	rectangle	used	in	the	previous
examples,	by	keeping	it	grayscale,	but	adding	an	additional	stop	point	and	color	value:

Here,	in	the	second	line,	a	very	dark	gray	color	with	the	value	#555	has	been	applied
at	position	0.2,	which	is	only	20	percent	into	the	gradient.	This	forces	the	left	20	percent
to	quickly	fade	from	#FFF	to	#555,	and	then	the	remaining	80	percent	fades	more	slowly
from	#555	to	#000,	as	shown	in	Figure	10-8.

FIGURE	10-8	The	first	20	percent	of	the	gradient	fades	far	more	quickly	than	the
final	80	percent.

You	can	include	more	stops	if	you	like,	and	they	can	be	any	colors	you	like.	So	I	have
chosen	to	use	a	rainbow	of	colors	for	the	third	rectangle,	like	this,	with	the	result	shown	in
Figure	10-9:

FIGURE	10-9	A	rainbow	of	colors	is	applied	to	the	third	rectangle’s	gradient	fill.

And	remember	that	all	these	fills	apply	equally	well	to	radial	gradient	fills,	so	I	have
chosen	to	reapply	the	same	rainbow	gradient	used	in	the	third	rectangle	to	the	fill	in	the
final	rectangle	(but	with	a	radius	of	75	pixels	to	allow	the	circle	to	touch	the	top	and
bottom	edges	and	show	more	of	the	fill),	with	the	result	shown	in	Figure	10-10.

FIGURE	10-10	The	rainbow	gradient	fill	is	applied	radially	to	the	final	rectangle.

Using	Patterns
In	the	final	part	of	this	lesson	I’ll	show	you	how	to	use	patterns	on	an	HTML5	canvas,
which	you	can	apply	instead	of	a	plain	or	gradient	fill	by	simply	modifying	the	details	you
pass	to	the	fillStyle	property,	and	using	the	same	fillRect()	or	other	fill	functions.

The	createPattern()	Function
To	create	a	pattern,	you	need	to	supply	a	pre-existing	image	such	as	a	jpeg,	png,	or	gif	file,
and	the	type	of	repetition	to	use	when	applying	the	fill,	out	of	the	following	options:

•			repeat	Repeat	the	image	both	vertically	and	horizontally.

•			repeat-x	Repeat	the	image	horizontally.

•			repeat-y	Repeat	the	image	vertically.

•			no-repeat	Do	not	repeat	the	image.

For	example,	the	following	code	loads	in	the	image	smiley-50.png	and	then	uses	it	as
a	fill	for	the	first	rectangle:

This	code	requires	some	explaining	(especially	if	you	are	new	to	JavaScript).	What	is
happening	is	that	in	the	first	line	a	new	object	called	image	is	created	using	the	JavaScript
Image()	function	and	the	keyword	new.	This	new	object	then	has	the	value	of	its	src
attribute	set	to	smiley-50.png,	which	is	a	file	already	saved	into	the	same	folder.

Then	the	onload	event	of	the	image	has	a	function	attached	to	it.	But	what	does	this
mean?	Well,	the	image	object	has	various	attributes	such	as	its	width	and	height,	the
source	from	where	it	is	loaded	and,	in	this	instance,	onload.	However,	the	onload	attribute
is	known	as	an	event	because	it	is	handled	in	a	special	manner	such	that	only	when	the
image	has	been	fully	loaded	from	its	source	is	the	event	called.

To	handle	the	event	when	it	is	called,	a	function	is	attached	that	will	access	the	canvas
and	do	the	pattern	filling.	Within	the	function	(inside	its	curly	braces),	there	are	three	lines
of	code,	and	here	you	should	be	back	in	familiar	territory,	because	the	first	one	is	simply	a
call	to	createPattern()	specifying	the	image	object	and	a	value	of	repeat,	indicating
how	the	image	should	be	used,	the	result	of	which	is	placed	in	the	new	object	called
pattern.

The	final	two	lines	simply	apply	this	pattern	object	to	the	fillStyle	property	and
then	call	the	fillRect()	function	to	use	that	fill	on	a	rectangle	(whose	top-left	corner	is	at
10,10)	and	with	a	width	of	90	pixels	and	height	of	150	pixels.	The	result	is	shown	in
Figure	10-11.

FIGURE	10-11	The	rectangle	has	been	filled	with	a	repeating	smiley	image.

If	the	function	is	not	attached	to	the	image’s	onload	event,	and	the	code	is	simply	called	from	outside	of	the
function,	then	you	run	the	risk	that	the	image	may	not	be	fully	loaded	when	you	make	the	call	to	the	fill
command,	and	therefore	the	call	may	fail.	This	is	a	standard	issue	with	JavaScript	and	external	images	that	you
must	always	consider,	and	so	wherever	such	an	image	is	loaded	in,	you	are	recommended	to	attach	the	code	that
will	use	it	to	the	onload	event	of	the	image.

In	the	figure	you	can	see	that	the	first	smiley	image	is	not	fully	within	the	rectangle.
This	is	because	the	fill	area	is	considered	to	be	the	entire	canvas,	and	therefore	the	fill
commences	at	the	top	left	of	the	canvas	(location	0,0),	but	is	only	revealed	within	the
constraints	of	the	fill	area.

Using	the	value	of	repeat-x	for	the	repetition	results	in	Figure	10-12,	repeat-y
results	in	Figure	10-13,	and	no-repeat	results	in	Figure	10-14.

FIGURE	10-12	The	rectangle	has	been	filled	only	horizontally.

FIGURE	10-13	The	rectangle	has	been	filled	only	vertically.

FIGURE	10-14	Only	a	single	instance	of	the	image	has	been	used	for	the	fill.

Summary
At	this	point	you	already	have	substantial	ability	to	work	with	the	HTML5	canvas,	and
will	be	able	to	draw	on	these	concepts	in	the	following	lesson,	which	moves	on	to	writing
text	(including	using	gradients	and	pattern	fills),	drawing	lines	and	curves,	drawing	with
images,	and	more.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			Which	function	is	used	to	create	a	filled	rectangle?

2.			How	can	you	change	the	fill	color?

3.			How	can	you	draw	a	clear	rectangle?

4.			With	which	function	can	you	draw	a	rectangular	outline?

5.			How	can	you	create	a	linear	gradient?

6.			How	do	you	create	a	radial	gradient?

7.			How	do	you	specify	the	colors	in	a	gradient?

8.			With	which	function	can	you	use	an	image	for	a	pattern	fill?

9.			What	are	the	four	different	types	of	pattern	fill?

10.			How	do	you	ensure	an	image	has	been	loaded	before	you	use	it?

T

Writing	Text	to	the	Canvas

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

his	lesson	continues	our	exploration	of	the	HTML5	canvas	by	looking	at	how	you	can
write	text	to	it,	including	using	a	variety	of	fonts	and	styles,	as	well	as	incorporating

the	various	fill	styles	covered	in	the	previous	lesson.

Many	of	these	examples	draw	on	those	in	Lesson	10,	so	you	may	wish	to	refer	back	to
that	from	time	to	time	as	you	work	your	way	through	this	one.

Writing	Text
HTML	4.01	provides	some	handy	tags	for	setting	font	sizes,	colors,	and	faces,	and	CSS
gives	you	even	more	control	over	how	these	are	applied,	including	using	effects	such	as
shadowing.	But	when	you	want	absolutely	precise	control	over	how	your	text	should
display,	the	canvas	has	what	you	need.	Also,	although	you	can	use	CSS	to	overlay	text	on
top	of	a	canvas,	you	can’t	use	it	to	layer	text	into	a	canvas,	or	to	apply	the	gradient	and
pattern	fill	effects	that	the	canvas	supports.

The	font	Property
Let’s	look	at	the	font	property	first,	and	see	how	to	select	the	font	face	to	use.	As	ever,	I
am	assuming	that	if	you	follow	these	examples	yourself,	you	have	also	included	the	O()
and	S()functions	and	the	code	to	create	a	2D	context	on	the	canvas	in	an	object	with	the
name	context.	To	recap,	your	code	should	look	something	like	this:

http://www.mhprofessional.com/nixonhtml5

The	width	and	height	of	410	by	170	pixels	shown	will	be	suitable	for	all	the	examples,
and	this	code	will	create	a	light	gray	background	behind	the	canvas	so	that	its	position	and
dimensions	are	clearly	visible.	You	must	place	the	O()	and	S()	functions	somewhere	in
your	document	within	a	<script>	section	for	these	examples	to	work.

So,	first,	let’s	choose	a	font,	like	this:
context.font	=	’72pt	Arial’

And	that’s	it—when	you	write	the	text	to	the	canvas,	it	will	be	in	72-point	Arial.

Font	Size	Measurement	Units
You	can	also	use	other	measurement	units	for	your	font	sizes,	which	can	be	either	relative
or	fixed.	Here’s	the	full	list	of	supported	relative	font	units:

•			em	Ems:	Based	on	the	default	preference	set	in	the	browser.

•			ex	X-height:	Based	on	the	height	of	the	lowercase	x	character.

•			px	Pixels:	Based	on	the	resolution	of	the	screen.

•			%	Percentage	(similar	to	em):	Based	on	the	default	preference	of	the	browser.

And	the	fixed	units	are:

•			in	Inches:	Imperial	measurement.

•			cm	Centimeters:	Metric	measurement	equivalent	to	one	100th	of	a	meter.

•			mm	Millimeters:	Metric	measurement	equivalent	to	one	10th	of	a	centimeter.

•			pt	Points:	A	print	unit.

•			pc	Picas:	Another	print	unit.

Therefore	the	following	examples	are	all	valid:

The	strokeText()	Function
Of	course,	you	now	need	a	way	to	write	text	in	the	newly	selected	font	to	the	canvas,	and
you	can	do	that	using	the	strokeText()	function,	like	this	(which	results	in	Figure	11-1):
context.strokeText(’Hello!’,	20,	120)

FIGURE	11-1	Seventy-two-point	outlined	text	displayed	on	an	HTML5	canvas

And	that’s	how	easy	it	is	to	get	text	onto	a	canvas.	Simply	set	the	font	property	to	the
font	and	size	to	use	and	then	(for	an	outlined	font)	call	strokeText(),	passing	the	text	to
display	and	the	location	where	the	bottom-left	corner	of	the	text	should	appear	by	default,
although	you	will	see	next	how	you	can	choose	a	different	horizontal	alignment	with	the
textAlign	property,	and	use	the	textBaseline	property	to	specify	the	offset	of	the	text
relative	to	the	vertical	coordinate	supplied.

The	textAlign	Property
But	there’s	more	to	writing	text	to	a	canvas	than	that	because	there	are	three	properties
you	can	pass	values	to	that	will	further	customize	the	way	text	appears.	For	example,
using	the	textAlign	property,	you	can	specify	the	alignment	of	the	text	out	of	the	values
start,	end,	left,	right,	and	center.	So,	to	center	some	text,	you	could	set	the	property
like	this:

As	you	may	have	noticed,	in	order	to	properly	center	the	text,	the	call	to
strokeText()	needed	its	horizontal	offset	changed	from	20	in	the	previous	example	to
205,	because	that	is	half	the	width	of	the	canvas	(which	is	410	pixels	wide),	and	the	result
is	shown	in	Figure	11-2.

FIGURE	11-2	The	text	is	centered	using	the	textAlign	property

Incidentally,	with	the	lineWidth	property,	you	can	also	change	the	width	of	any	line
drawn	using	any	of	the	line-drawing	functions	(more	about	these	in	Lesson	12),	and	this
also	includes	strokeText().	The	following	line	of	code	increases	the	width	to	five	pixels,
as	seen	in	Figure	11-3,	where	the	previous	example	has	been	modified	to	create	a	very
thick	border.

FIGURE	11-3	The	border	outline	has	been	thickened	to	five	pixels	wide.

The	textBaseline	Property
When	you	draw	text	to	the	canvas,	you	must	supply	horizontal	and	vertical	(x	and	y)
coordinates	for	its	top-left	corner.	Using	the	textBaseline	property,	you	can	choose	the
vertical	offset	(or	y	value)	at	which	text	will	be	displayed	from	this	location.

•			top	Aligns	the	top	of	the	text	to	the	y	value.

•			middle	Aligns	the	middle	of	the	text	to	the	y	value.

•			bottom	Aligns	the	bottom	of	the	text	to	the	y	value.

•			alphabetic	Aligns	the	alphabetic	baseline	of	the	text	to	the	y	value.

•			hanging	Similar	to	top.

•			ideographic	Similar	to	alphabetic.

Figure	11-4	illustrates	using	the	first	four	preceding	values	for	this	property,	as	in	the
following	lines	of	code,	which	write	the	word	“top”	using	the	textBaseline	value	of	top.
The	hanging	and	ideographic	values	are	offset	by	a	tiny	amount	from	top	and
alphabetic	respectively—the	best	way	to	see	whether	you	need	these	values	is	to	try
them	for	yourself.

FIGURE	11-4	Vertically	aligning	text	using	the	textBaseline	property

The	fillText()	Function
In	the	same	way	that	you	can	use	strokeText()	in	a	similar	fashion	to	strokeRect()	(as
detailed	in	the	previous	lesson),	you	can	also	use	fillText()	to	create	solid,	gradient,	and
pattern-filled	text,	just	as	you	can	provide	those	types	of	fills	to	rectangles	with	the
fillRect()	function.

To	show	how	this	works,	here’s	some	code	to	write	the	word	HTML5	in	a	big	and
bold	black	color	since	no	fill	color	has	been	specified	(so	the	default	of	black	is	used),	as
shown	in	Figure	11-5:

FIGURE	11-5	A	116-point	font	filled	in	with	the	color	black

Now	let’s	look	at	applying	different	colors,	gradient	fills,	and	patterns,	starting	by
simply	changing	the	text	to	blue,	like	this:
context.fillStyle	=	’blue’

By	now	you	should	be	so	used	to	simple	color	changes	that	there’s	no	need	to	show
the	result	of	this	in	a	figure.	Instead	let’s	see	how	a	simple	vertical	gradient	works	with	the
font	(as	shown	in	Figure	11-6),	like	this:

FIGURE	11-6	The	solid	fill	has	been	replaced	with	a	gradient.

As	explained	in	the	previous	lesson,	you	can	set	the	start	and	end	point	of	the	gradient	to	any	locations	within
(or	even	outside	of)	the	canvas,	allowing	you	to	create	a	wider	variety	of	effects	than	if	they	were	limited	to
simply	applying	it	under	the	object	being	drawn.

Using	the	rainbow	color	gradient	from	the	previous	lesson	but	applying	it	creatively

as	a	radial	gradient	allows	the	effect	of	a	real	rainbow	to	be	applied	as	the	fill	effect,	like
this,	which	displays	as	Figure	11-7:

FIGURE	11-7	Creating	a	rainbow	effect	with	a	radial	gradient

In	this	example,	a	vertical	offset	of	230	pixels	from	the	top	of	the	canvas	was	selected.
This	places	the	center	of	the	radial	gradients	at	a	location	60	pixels	below	the	bottom	of
the	canvas.	This	allows	only	a	top	portion	of	the	rainbow	to	be	used	for	the	fill.	If	you
select	radius	values	of	120	pixels	for	the	inner	gradient	and	240	for	the	outer	one,	the
rainbow	is	120	pixels	wide.	However,	due	to	the	way	the	fill	works,	the	areas	inside	and
outside	of	this	section	are	set	to	the	initial	and	final	color	values,	so	that	the	inside	is	red
and	the	outside	is	violet.

If	this	is	not	the	effect	required,	it	is	a	simple	matter	to	surround	the	initial	and	final
colors	with	white	(or	whichever	colors	you	prefer),	and	make	room	for	them	by	slightly
adjusting	the	addColorStop	values	of	the	previous	start	and	end	colors,	like	this:

As	shown	in	Figure	11-8,	this	results	in	only	the	rainbow	itself	being	displayed.

FIGURE	11-8	The	inside	and	outside	areas	have	been	set	to	white.

You	can	also	use	patterns	with	the	fillText()	function,	as	with	the	following	code,
which	attaches	a	function	to	the	onload	event	of	an	image	object	called	image	that	uses	a
marble	pattern	from	the	file	marble.jpg	(to	ensure	that	the	code	runs	only	after	the	image
has	fully	loaded):

The	image	is	then	processed	using	the	createPattern()	function	with	a	setting	of	no-
repeat,	and	passed	to	a	new	object	called	pattern.	In	turn,	pattern	is	supplied	as	the
value	for	the	fillStyle	property,	which	is	then	used	to	fill	the	text	using	the	fillText()
function.	The	result	of	this	can	be	seen	in	Figure	11-9.

FIGURE	11-9	The	text	has	now	been	filled	with	a	pattern.

In	this	instance	the	image	used	for	the	fill	pattern	is	larger	than	the	canvas,	so	there	is
no	need	to	repeat	(or	tile)	it.	But	if	you	have	a	smaller	image	that	will	tile	well,	you	can
repeat	it	horizontally,	vertically,	or	in	both	directions.	See	Lesson	10	for	more	details	on
how	to	create	and	use	patterns.

Determining	Text	Width
Sometimes	you	need	to	know	how	wide	some	text	will	be	in	order	to	best	position	it.	To
find	out	this	value,	set	all	the	properties	as	you	would	before	writing	the	text	and	then
issue	statements	such	as	the	following,	which	creates	an	object	called	metrics	into	which
information	about	the	text	is	stored.

As	illustrated	by	the	following	example	(see	Figure	11-10),	the	width	property	of
metrics	then	holds	the	width	of	the	text	in	pixels,	which	is	displayed	by	the	JavaScript
alert()	function	(which	pops	up	a	small	window	containing	the	string	in	parentheses
following	the	alert	function	name,	namely	some	text	surrounding	the	width	property):

FIGURE	11-3	Displaying	the	width	of	some	text

The	object	returned	by	the	measureText()	function	currently	only	supports	the	width
property.

Summary
With	creating	text	now	in	your	toolkit,	in	the	following	lesson	we	will	return	to	looking	at
some	of	the	drawing	tools,	this	time	ones	that	use	paths	to	create	lines,	so	that	you	have
fine	control	over	all	the	straight	lines,	shapes,	and	curves	you	could	want.	And	in	the
lesson	after	that,	I’ll	show	you	how	you	can	use	an	image	as	a	paintbrush,	how	to	add
shadow	effects,	and	how	to	manipulate	each	and	any	of	the	pixels	(individual	dots)	in	a
canvas.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			How	do	you	choose	the	font	for	writing	to	a	canvas?

2.			With	which	function	can	you	write	outlined	text	to	a	canvas?

3.			What	are	the	relative	measurement	units	supported	by	the	canvas?

4.			What	are	the	fixed	measurement	units	supported	by	the	canvas?

5.			Which	function	allows	you	to	write	filled	text	to	a	canvas?

6.			How	could	you	center-align	text	on	a	canvas?

7.			Which	text	alignment	values	are	supported	by	textAlign?

8.			How	can	you	change	the	horizontal	line	about	which	text	will	be	based?

9.			Which	values	are	supported	for	altering	this	base	line?

10.			How	can	you	discover	the	width	in	pixels	that	a	text-writing	call	will
require?

I

Drawing	Lines,	Paths,	and	Curves

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

n	this	lesson	I’ll	be	showing	you	how	you	can	customize	all	the	functions	that	draw
using	lines,	such	as	strokeRect()	and	strokeText()	(which	you’ve	already	seen),	as

well	as	the	line-drawing	functions,	and	how	to	use	paths	to	create	complicated	patterns
and	curves.	All	example	files	used	in	this	(and	every	other)	lesson	can	be	downloaded
from	20lessons.com.

Drawing	Lines
The	HTML5	canvas	supports	line	drawing	using	many	different	styles	because	you	can
precisely	specify	the	width	of	lines	with	the	lineWidth	property	(as	you	have	previously
seen),	and	can	also	set	properties	such	as	lineCap,	lineJoin,	and	miterLimit.

The	lineWidth	Property
You	previously	encountered	the	lineWidth	property	in	Lesson	11	where	it	was	used	to
thicken	the	line	width	used	in	a	call	to	the	strokeText()	function.	What	this	property	does
is	change	the	line	width	for	future	operations	that	use	line	drawing,	including
strokeText()	and	stroke()	(detailed	a	little	later).

For	example,	the	following	command	sets	the	lineWidth	property	to	10	pixels,	as
seen	in	the	horizontal	and	angled	lines	in	Figure	12-1	(for	comparison	the	thin,	vertical
lines	in	the	figure	are	one	pixel	wide):
context.lineWidth	=	10

http://www.mhprofessional.com/nixonhtml5
http://www.20lessons.com

FIGURE	12-1	A	selection	of	line	types	using	different	line	caps	and	joins

The	lineCap	Property
Using	the	lineCap	property,	you	can	choose	the	way	the	starts	and	ends	of	lines	are
displayed.	This	is	known	as	their	line	cap,	and	hence	the	lineCap	property	name,	which
can	be	any	value	out	of	butt,	round,	and	square,	as	shown	in	the	left	half	of	Figure	12-1,
and	used	like	these	examples:

The	top	line	on	the	left	of	the	figure	uses	the	lineCap	value	of	butt	in	which	the	ends
butt	up	exactly	against	the	vertical	lines	I	have	drawn	(for	comparing	the	line	cap	types),
indicating	the	start	and	end	points	of	each	line.	If	no	value	is	given	to	the	lineCap
property,	it	assumes	a	default	value	of	butt.

The	middle	line	uses	a	lineCap	property	of	round	and,	as	you	can	see,	it	therefore
extends	past	the	left	and	right	edges,	with	the	center	point	of	the	rounded	cap	being	the
end	points	of	the	line.

The	bottom	line	uses	the	value	square	for	the	lineCap	property,	which	is	almost	the
same	as	round,	in	that	the	centers	of	the	squares	are	the	end	points	of	the	line.

The	lineJoin	Property
The	lineJoin	property	is	similar	to	the	lineCap	property,	but	it	applies	only	at	the	points
at	which	lines	are	joined.	It	supports	the	values	of	round,	bevel,	and	miter,	as	you	can	see
by	looking	at	the	joins	of	the	three	right-hand	pairs	of	lines	in	Figure	12-1,	in	which	the
end	caps	are	the	same	as	the	lines	on	the	left.	Following	are	examples	of	setting	this
property:

However,	the	top	pair	of	lines	uses	the	value	round	for	the	lineJoin	property,	the
middle	pair	uses	the	value	bevel,	and	the	bottom	one	uses	the	value	miter.

The	miterLimit	Property
In	order	to	achieve	the	sharp	miter	in	the	bottom-right	pair	of	lines	in	Figure	12-1,	it	was
necessary	to	use	the	miterLimit	property,	giving	it	a	value	of	12,	in	order	to	allow	the
quite	sharp	angle	to	extend	far	enough.	Here	is	how	you	would	set	this	property:
context.miterLimit	=	12

If	miterLimit	is	not	set	to	a	sufficiently	large	enough	value	for	a	miter,	then	mitered	joins	will	simply	use	the
bevel	value	instead,	so	if	you	are	having	trouble	with	your	miters,	simply	increase	the	value	you	supply	for
miterLimit	until	the	miter	displays.

Drawing	with	Paths
Figure	12-1	was	created	using	a	combination	of	line	properties	(as	described	in	the
previous	section),	along	with	a	combination	of	path-handling	functions.	Using	them,	it	is
easy	to	move	an	imaginary	pen	to	a	start	location,	define	a	path	it	must	follow,	and	then
tell	it	to	draw	along	that	path	using	the	properties	already	set	up	for	it	such	as	width,	caps,
joins,	and	color,	as	described	next.

The	beginPath()	and	closePath()	Functions
Every	path	created	for	an	HTML5	canvas	must	start	with	a	call	to	beginPath(),	and	end
with	a	call	to	closePath(),	like	this:

Think	of	them	as	being	like	opening	and	closing	HTML	tags.	Once	a	path	is	created,
you	can	make	it	display,	but	first	let’s	look	at	how	to	create	one.

The	moveTo()	and	lineTo()	Functions
The	first	step	in	a	path	is	generally	to	move	to	a	location	on	the	canvas	so,	for	example,	to
move	to	the	location	20,20,	you	would	issue	this	command:
context.moveTo(20,	20)

To	then	specify	that	a	line	should	be	drawn	(once	the	path	is	completed),	you	can	then
issue	a	command	such	as	the	following,	which	will	specify	that	the	next	part	of	the	path	is
to	draw	a	line	from	the	current	location	20,20	to	390,20:
context.lineTo(390,	20)

Let’s	look	at	the	path	used	to	draw	a	rectangle,	including	the	opening	and	closing	path
function	calls:

The	stroke()	Function
Once	you	have	a	path	created,	you	can	draw	it	on	the	canvas	using	the	stroke()	function
like	this,	which	in	the	case	of	the	current	example	displays	as	Figure	12-2:
context.stroke()

FIGURE	12-2	A	rectangle	drawn	using	a	path

And	there	you	have	it.	The	path	has	been	processed	by	the	stroke()	function	and	all
the	parts	in	the	path	are	now	drawn.

The	rect()	Function
If	all	you	wanted	to	draw	in	the	first	instance	was	a	rectangle,	then	there’s	a	quicker	way
to	do	this	than	defining	an	entire	path.	Instead	you	can	use	the	rect()	function	with	a
path,	like	this:

The	top	left-hand	corner	of	the	rectangle	is	specified	by	the	first	two	arguments	in	the
function	call,	and	the	second	two	contain	the	width	and	height	of	the	rectangle.	The	end
result	is	shown	in	Figure	12-3,	in	which	both	rectangles	(from	the	previous	and	current
examples)	have	been	combined	and	created	within	the	same	path,	as	follows:

FIGURE	12-3	The	two	rectangles	are	created	from	a	single	path.

The	fill()	Function
Using	the	fill()	function,	you	can	fill	in	any	area	bounded	by	a	path.	For	example,	the
following	code	creates	a	four-pointed	star,	which	is	then	filled	in,	as	shown	in	Figure	12-4:

FIGURE	12-4	Filling	in	a	four-pointed	star

If	you	don’t	fully	enclose	the	shape	by	drawing	a	line	back	to	the	start	point,	the
function	still	does	a	very	good	attempt	at	filling	only	the	shape	by	making	that	final	link
for	you	before	performing	the	fill.

The	clip()	Function
When	creating	a	path,	you	can	choose	to	constrain	the	drawing	area	using	the	clip()
function	to	select	any	area	of	the	canvas,	so	that	any	part	that	would	be	drawn	outside	of
this	area	will	be	ignored,	and	only	parts	of	the	path	that	fall	inside	the	clipped	area	will	be
used.

The	clip()	function	works	on	a	path	in	the	same	way	as	the	stroke()	or	fill()
functions.	For	example,	the	following	code	creates	a	diamond-shaped	path,	which	is	then
revealed	with	a	simple	call	to	stroke(),	as	shown	in	Figure	12-5,	in	which	the	diamond
has	been	drawn	over	the	star	shape:

FIGURE	12-5	The	diamond	path	is	drawn	on	top	of	the	star	pattern.

However,	by	placing	the	diamond	path	before	the	star	shape	is	drawn,	and	using	the
clip()	function	on	it	after	the	stroke()	function,	this	path	becomes	a	bounded	area,
outside	of	which	future	path-related	functions	cannot	draw,	as	with	the	following	code	(the
result	of	which	is	shown	in	Figure	12-6):

FIGURE	12-6	The	diamond	is	both	drawn	and	used	in	a	clip()	call.

If	you	want	to	use	a	path	for	constraint	only,	and	not	actually	draw	it,	simply	omit	the
call	to	stroke()	from	the	previous	example,	and	the	result	is	Figure	12-7.

FIGURE	12-7	Only	the	star	shape	is	drawn,	constrained	by	the	diamond	area.

Or,	perhaps	you	simply	may	wish	to	give	the	diamond	shape	a	border,	fill	it	with	one

color,	and	then	fill	the	area	of	the	star	within	that	shape	in	another	color,	which	is	easily
achieved	by	placing	the	relevant	fillStyle	assignments	before	the	drawing	commands,
as	shown	in	Figure	12-8.	I’ll	leave	it	up	to	you	to	work	out	how	to	achieve	this	effect—it’s
very	simple	(or	you	can	view	the	commented	code	in	the	accompanying	example	files,
downloadable	using	the	link	at	the	start	of	this	lesson).

FIGURE	12-8	The	diamond	is	filled,	as	is	the	portion	of	the	star	within	it.

You	may,	of	course,	use	any	types	of	fill	on	a	path	as	well	as	the	solid	color	fills,	including	linear	and	radial
gradients	and	patterns.	Simply	assign	the	relevant	value	to	the	fillStyle	property	before	making	a	fill.

The	isPointInPath()	Function
Sometimes	you	need	to	know	whether	a	particular	point	lies	in	a	path	you	have
constructed.	However,	you	will	normally	only	want	to	use	this	function	if	you	are	quite
proficient	with	JavaScript.	You	will	generally	call	it	as	part	of	a	conditional	statement,	like
this:

If	the	location	specified	lies	along	any	of	the	points	in	the	path,	the	function	returns
the	value	true	and	the	contents	of	the	if()	statement	are	executed.	Otherwise,	the	value
false	is	returned	and	the	contents	of	the	if()	statement	do	not	get	executed.

Creating	Curves
I	leapt	a	little	ahead	of	myself	by	showing	you	how	to	fill	in	and	clip	paths,	but	I	wanted	to
show	you	some	of	the	fun	you	could	have	with	them	and	I	couldn’t	resist.	So	now	(slightly

out	of	order),	here	are	some	more	path	functions	you	can	use,	this	time	for	creating	arcs,
circles,	and	complex	curves.

As	with	the	previous	examples,	all	of	these	can	be	filled	in	with	plain	colors,	gradient
or	radial	fills	and	patterns,	or	you	can	draw	curves	using	stroke	functions	and	their
associated	properties	such	as	lineWidth,	lineCap,	and	lineJoin.

The	arc()	Function
Probably	the	simplest	form	of	curve	is	the	arc,	which	is	simply	a	segment	of	the	perimeter
of	a	circle.	To	create	an	arc,	you	include	it	within	a	path	with	the	start	of	the	curve
connected	to	the	final	point	on	the	path	previous	to	it,	and	the	curve’s	end	connected	to	the
next	point	in	the	path	after	it.

It	is	possible	to	create	an	arc	without	using	the	path	functions,	but	a	path	will	be	assumed	based	on	the
previous	and	future	drawing	points,	and	these	will	connect	up	to	it.	So	for	precise	control,	I	recommend	always
using	it	inside	a	path.

You	must	provide	six	arguments	to	the	function:	a	pair	of	coordinates	representing	the
center	of	the	circle	upon	which	the	arc	is	based,	the	radius	required,	the	radian	offset	value
for	the	start	of	the	arc,	a	radiant	offset	value	for	the	end	of	the	arc,	and	then	a	value
indicating	whether	to	draw	the	arc	clockwise	or	counterclockwise.	Let’s	look	at	these	in
turn.

•			X	and	Y	coordinates	The	coordinates	for	an	arc	are	simply	the	horizontal	and
vertical	offset	from	the	top-left	corner	of	the	canvas	for	the	center	of	the	circle,	such
as	205,85,	which	is	205	pixels	in	from	the	left,	and	85	pixels	down	from	the	top	of	the
canvas.

•			Radius	This	is	a	value	in	pixels	representing	the	distance	from	the	center	of	the
circle	to	its	perimeter	(or	circumference).	This	is	the	location	at	which	the	arc	will	be
drawn.	For	example,	the	value	75	states	that	the	arc	will	be	drawn	at	a	distance	of	75
pixels	from	the	center	of	the	circle.

•			Radian	offsets	These	specify	the	start	and	end	position	on	the	circle’s
perimeter	between	which	the	arc	should	be	created.	A	value	of	0	radians	specifies	the
three	o’clock	position	directly	to	the	right	of	the	circle’s	center.	A	radian	has	the	value
180	÷	Δ	(the	equivalent	of	about	57	degrees),	and	so	there	are	Π	×	2	radians	in	a
complete	circle	of	360	degrees.	This	means	that	to	draw	a	quarter	circle	(for	example),
from	the	three	o’clock	to	six	o’clock	positions,	you	would	use	an	initial	value	of	0
radians,	and	a	second	value	of	Δ	÷	2	radians.	For	a	semicircle,	the	second	value	would
be	Δ	radians,	and	for	a	circle	it	would	be	Π	×	2	radians.	Remember	that	Π	is	the
number	of	times	the	diameter	of	a	circle	fits	into	its	circumference	(or	about
3.1415927	in	decimal).

•			Direction	To	create	a	clockwise	arc,	the	final	argument	must	have	a	value	of
false,	which	is	the	default	value	if	you	omit	this	argument.	For	a	counterclockwise

arc,	it	should	be	true.

So,	for	example,	the	following	code	draws	four	segments	of	a	pie,	with	the	final	one
filled	in	using	the	fill()	function,	rather	than	drawn	using	the	stroke()	function,	as
shown	in	Figure	12-9:

FIGURE	12-9	Arcs	created	with	the	arc()	function

Math.PI	is	a	convenient	way	to	refer	to	the	value	of	Π	using	JavaScript.	The	first
image	in	the	figure	uses	radian	values	of	0	and	Math.PI	/	2,	the	second	image,	uses	0	and

Math.PI,	the	third	image,	uses	0	and	Math.PI	/	2	*	3,	and	the	fourth	image	uses
Math.PI	*	2.	In	each	case,	a	call	to	moveTo()	moves	the	path	starting	point	to	the	center
of	the	circle,	then	the	next	point	in	the	path	is	the	start	of	the	arc,	followed	by	the	arc’s
end,	and	then	the	initial	starting	point	again.	By	doing	this,	a	slice	of	the	circle	is	created
to	clearly	show	the	arcs.	In	the	final	image	the	fill()	function	was	used	to	illustrate	how
you	can	use	that	instead	of	stroke()	if	you	wish,	as	well	as	the	linear,	gradient,	and
pattern	fills.

If	you	wish	to	draw	only	the	arc	portion	of	the	images	in	Figure	12-9,	then	you	need
to	close	the	path	after	issuing	the	call	to	the	stroke()	function,	and	you	do	not	need	to
first	move	the	path	start	to	the	center	of	each	circle.	So	you	could	use	code	such	as	this
(which	results	in	Figure	12-10):

FIGURE	12-10	Only	the	arcs	are	now	drawn.

For	this	example,	I	chose	not	to	fill	in	the	final	circle	so	you	can	see	how	to	draw	a
complete,	outlined	circle.	Remember	too	that	you	can	change	the	stroke	width	and	other
properties	by	assigning	the	relevant	values	to	the	strokeStyle	property.

If	you	wish	to	draw	the	arcs	in	a	counterclockwise	direction,	you	can	change	the	final
argument	in	the	call	to	arc()	to	true.	The	result	is	shown	in	Figure	12-11,	in	which	you
will	note	that	you	always	get	a	full	circle	for	image	four,	regardless	of	the	direction	of
drawing.

FIGURE	12-11	Drawing	the	arcs	in	a	counterclockwise	direction

The	arcTo()	Function
There’s	another	way	you	can	draw	an	arc,	which	is	to	use	the	arcTo()	function,	which
draws	a	curve	based	on	the	current	location	the	path	has	reached,	and	arguments	that	you
supply	to	it	representing	a	pair	of	imaginary	tangent	lines	touching	the	circle’s	perimeter.

For	example,	let’s	assume	that	the	current	path	position	has	been	achieved	using	a
moveTo()	call,	like	this,	which	places	the	start	position	of	the	path	at	the	bottom-left	corner
of	the	canvas:

Now	a	curve	can	be	created	with	its	start	point	at	this	location	and	an	end	point	at
location	170,0,	like	this:
context.arcTo(0,	0,	170,	0,	170)

So,	we	have	the	start	point	of	0,170	from	the	moveTo()	call,	and	end	point	of	170,0
being	the	third	and	fourth	arguments	to	arcTo(),	but	what	about	the	first	two	and	final
arguments	in	the	arcTo()	call?

Well,	the	first	two	arguments	of	0,0	in	the	arcTo()	call	represent	the	end	point	of	an
imaginary	tangent	line	starting	at	0,170	and	ending	at	0,0.	Then	the	third	and	fourth
arguments	(as	well	as	being	the	end	point	for	the	arc)	represent	the	end	of	a	tangent	line
drawn	from	0,0	to	170,0.

The	points	where	these	two	tangents	meet	the	circle’s	circumference	are	the	arc’s	start
and	end	points	and,	because	a	tangent	must	always	be	at	a	right	angle	to	the	radius	of	a
circle,	the	arc	to	create	can	now	be	calculated.	Let’s	see	how	this	works	by	first	drawing
the	imaginary	lines,	with	the	following	code,	as	shown	in	Figure	12-12:

FIGURE	12-12	Two	lines	have	been	drawn,	which	are	tangential	to	the	circle.

The	first	line	sets	a	green	color	to	differentiate	from	the	arc	that	will	be	drawn	in	a
moment.	Then	a	simple	path	is	created	to	draw	the	two	lines,	which	are	simply	to	show
where	the	imaginary	tangents	would	be	if	they	were	displayed,	so	the	preceding	code	is
only	for	illustrative	purposes.	The	arcTo()	code	is	as	follows,	and	results	in	Figure	12-13:

FIGURE	12-13	The	arc	has	connected	the	end	points	of	the	pair	of	tangents.

Figure	12-13	also	serves	to	illustrate	the	purpose	of	the	final	argument	to	the	arcTo()
function,	which	is	the	radius	of	the	circle	on	which	the	arc	is	based.	In	this	example	the
two	tangents	are	sides	of	a	square	(at	90	degrees	to	each	other),	and	the	arc	is	a	quarter
circle	with	a	radius	of	170	pixels	(whose	origin—or	center—is	therefore	at	location
170,170).

If	this	function	baffles	you,	try	playing	with	the	examples	on	the	companion	website	(at	20lessons.com),	and
you’ll	soon	come	to	grips	with	how	these	tangents	work.

The	quadraticCurveTo()	Function
In	addition	to	arcs,	you	can	even	create	the	most	fancy	of	curves	using	the	function
quadraticCurveTo(),	which	employs	an	imaginary	attractor	object	that	pulls	the	curve
towards	it.	For	example,	let’s	draw	a	line	between	the	left	and	right	side	of	the	canvas
using	a	simple	stroke()	call,	like	this	(as	shown	in	Figure	12-14):

http://www.20lessons.com

FIGURE	12-14	A	simple	horizontal	line

Now	let’s	draw	a	curved	line	between	these	positions,	but	with	an	imaginary	attractor
up	in	the	top	left-hand	corner,	at	location	0,0,	like	this	(and	shown	in	Figure	12-15):

FIGURE	12-15	A	curve	has	been	created	using	an	imaginary	attractor.

As	you	can	see	from	the	figure,	the	entire	curve	has	been	pulled	toward	the	attraction
point	as	if	the	curve	were	made	of	an	elasticized	magnetic	material	being	attracted	toward
a	magnet.	The	further	up	the	attractor	is	placed,	the	higher	the	curve	will	be	pulled.
Similarly,	if	the	attractor	is	moved	to	the	left	or	right,	then	the	attraction	will	also	move	in
that	direction.

Sometimes	it	takes	a	little	trial	and	error	to	get	just	the	curve	you	need,	but	you	should	soon	get	the	hang	of
this	function.

The	bezierCurveTo()	Function
If	you	thought	quadratic	curves	were	funky,	then	wait	till	you	check	out	Bézier	curves.
These	are	similar	but	support	the	use	of	two	imaginary	attractors,	which	can	be	placed
anywhere	on	(or	off)	the	canvas.

For	an	example,	let’s	adapt	the	previous	example	to	add	a	second	attractor	at	the
bottom-right	corner	of	the	canvas	by	replacing	the	call	to	quadraticCurveTo()	with	one
to	bezierCurveTo(),	like	this	(resulting	in	Figure	12-16):

FIGURE	12-16	This	curve	has	two	imaginary	attractors.

Since	you	can	place	the	pair	of	attractors	anywhere	you	like	(not	necessarily	at	opposites	sides	of	the	curve),
you	can	create	any	curve	that	is	possible	to	draw	using	Bézier	curves,	although	trial	and	error	may	again	be
required.

Summary
You	now	have	all	the	line,	curve,	and	path	tools	added	to	your	toolkit.	Remember	that	you
may	create	as	complicated	and	lengthy	paths	as	you	like,	and	you	are	not	limited	to	the
small	snippets	of	examples	I	have	shown	you	in	this	lesson.	When	your	code	is	properly
implemented,	you	can	create	sketches	and	logos,	or	use	the	functions	as	part	of	a	design
program	you	can	write	in	JavaScript.

In	the	following	lesson	I’ll	continue	our	journey	into	the	vast	resource	that	is	the
HTML5	canvas	by	showing	you	how	to	write	on	the	canvas	using	images,	how	to	apply
shadows,	and	even	manipulate	pixels	directly.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			With	which	property	can	you	change	the	width	of	line	drawing	on	the	canvas?

2.			How	can	you	change	the	way	lines	start	and	end,	and	the	way	lines	join	to
each	other?	And	how	can	you	extend	the	limit	of	mitered	line	joins?

3.			How	do	you	start	and	end	a	path?

4.			How	do	you	move	the	drawing	position	of	a	path	without	creating	a	line?

5.			How	do	you	create	a	line	within	a	path?

6.			Which	functions	apply	a	path	to	the	canvas	as	a	line,	and	as	a	filled	area?

7.			Which	functions	draw	an	outlined	rectangle,	and	a	filled	rectangle?

8.			With	which	function	can	you	create	all	or	part	of	a	circle?

9.			How	can	you	create	an	arc	from	one	point	to	another	based	on	imaginary
tangents?

10.			How	can	you	create	a	curve	that	is	modified	by	an	imaginary	attractor?	And
two	imaginary	attractors?

I

Manipulating	Images,	Shadows,	and
Pixels

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

n	this	lesson	I’ll	begin	to	look	into	the	more	advanced	aspects	of	the	HTML5	canvas,
including	drawing	using	images,	adding	shadows,	and	even	directly	manipulating	the

pixels	(individual	dots)	of	the	canvas	by	their	constituent	primary	colors	of	red,	green,	and
blue,	and	their	transparency	too.

Using	Images
On	top	of	all	the	other	drawing	functions	available	to	you	for	manipulating	the	HTML5
canvas,	you	have	also	seen	how	you	can	import	an	image	to	use	as	a	fill	pattern.	In	fact,
you	can	also	use	images	to	draw	directly	on	the	canvas.

The	drawImage()	Function
Using	the	drawImage()	function,	you	can	load	in	an	image	such	as	a	jpg,	gif,	or	png,	and
draw	it	directly	on	the	canvas,	like	this	code,	which	draws	it	with	its	top-left	corner	at
location	10,10,	as	displayed	in	Figure	13-1:

http://www.mhprofessional.com/nixonhtml5

FIGURE	13-1	An	image	is	loaded	in	and	placed	on	the	canvas.

As	you	will	recall	from	previous	lessons,	the	onload	event	of	the	image	object	is
attached	to	a	function,	whose	code	is	executed	only	when	the	image	has	been	fully	loaded.
If	this	were	not	the	case,	the	image	might	not	display.

In	this	instance	only	the	first	three	parameters	the	function	accepts	have	been	used.
These	are	the	image	to	use	and	the	horizontal	and	vertical	location	at	which	it	should	be
displayed,	so	the	image	is	displayed	full	size.	However,	it	is	also	possible	to	resize	the
image	before	it	is	placed	on	the	canvas	by	passing	additional	arguments,	as	with	these	two
examples	(with	the	resizing	values	highlighted	in	bold),	the	result	of	which	is	shown	in
Figure	13-2:

FIGURE	13-2	Two	copies	of	the	reduced	image	have	been	added.

Here	the	image	has	been	reduced	to	just	under	a	quarter	of	its	original	size	by	more
than	halving	its	dimensions,	and	then	two	copies	have	been	placed	alongside	the	original,
one	above	the	other.	This	version	of	the	function	call	takes	arguments	in	this	order:	the
image	to	display,	the	horizontal	and	vertical	location	to	display	it,	and	the	width	and	height
to	use	for	displaying	it.

When	using	rescaling	on	an	image,	you	may	not	always	get	the	sharpest	anti-aliased	results	you	could
otherwise	achieve	by	first	resizing	them	in	a	graphics	program.	However,	the	results	aren’t	bad	and	they	are	fast,
and	if	you	understand	writing	loops	in	JavaScript,	you	can	even	use	them	for	animation.

But,	as	they	say	in	the	infomercials,	there’s	more.	Not	only	can	you	resize	an	image
down,	you	can	resize	it	up	too.	What’s	more,	you	can	also	choose	which	area	of	the	image
to	use	when	doing	so,	and	you	are	therefore	not	restricted	to	using	the	entire	image.

For	example,	the	original	html5.png	image	used	in	these	examples	has	dimensions	of
132	by	150	pixels.	Using	the	following	line	of	code,	a	rectangular	subsection	of	this	image
has	been	selected,	enlarged,	and	placed	to	the	right	of	the	two	smaller	images,	as	shown	in
Figure	13-3:
context.drawImage(image,	23,	26,	86,	98,	224,	10,	118,	150)

FIGURE	13-3	The	image	has	been	cropped	and	enlarged	before	use.

You	must	be	wary	when	using	this	version	of	the	function	call	because,	rather	than
adding	parameters	to	the	existing	ones,	four	new	arguments	are	inserted	between	the
image	argument	and	the	ones	in	the	previous	examples.	For	example,	in	this	instance	the
first	four	numeric	arguments	of	23,	26,	86,	and	98	are	two	pairs,	the	first	of	which	is	the
location	of	the	top-left	corner	of	the	part	of	the	image	to	crop,	and	the	second	pair	are	the
width	and	height	for	the	crop.

These	values	result	in	clipping	out	the	number	5	from	the	image.	Then	the	remaining
four	values	are	the	same	as	in	the	previous	examples.	They	are	the	horizontal	and	vertical
location	at	which	to	place	the	cropped	image,	and	the	width	and	height	to	use	for
displaying	it.

Using	the	Canvas	as	a	Source	Image
You	are	not	restricted	to	using	only	external	images	within	a	canvas	because	you	can	copy
sections	of	the	canvas	itself	and	write	them	back	to	it,	even	after	cropping	and/or	reducing
or	enlarging	them.

For	example,	in	the	following	code	the	left	half	of	the	canvas	is	captured,	reduced	in
size,	and	copied	to	the	top	right	of	the	canvas,	as	shown	in	Figure	13-4:
context.drawImage(canvas,	10,	10,	205,	150,	352,	10,	48,	35)

FIGURE	13-4	A	portion	of	the	image	has	been	grabbed	and	reused.

This	code	works	by	referring	to	the	canvas	object	in	the	first	argument,	rather	than
one	for	an	external	image.	As	you	can	see,	the	reduced	images	are	looking	quite	jagged
now,	so	it’s	probably	worth	doing	your	own	resizing	in	an	editor	for	major	changes	like
this,	although,	as	I	previously	mentioned,	as	part	of	an	animation	or	transition	effect,	this
function	works	just	great.

The	HTML5	specifications	also	call	for	being	able	to	use	an	HTML	video	element	for	drawing	on	a	canvas,
but	this	doesn’t	seem	to	work	on	any	of	the	browsers	I	have	tested	it	with.	Hopefully	this	feature	will	be
operational	soon	as	it	would	be	really	useful.	In	the	meantime,	if	you	are	skilled	with	JavaScript,	there	are	more
complicated	ways	you	can	google	to	find	out	how	to	place	video	on	a	canvas.

Adding	Shadows
The	HTML	canvas	supports	the	addition	of	a	shadow	to	any	element	that	you	draw	on	it
with	the	use	of	a	group	of	four	properties	you	can	set	to	specify	a	vertical	and	horizontal
offset,	the	shadow	blur,	and	its	color,	as	follows:

•			shadowOffsetX	The	horizontal	offset	in	pixels	that	the	shadow	should	be	shifted
to	the	right	by	(or	to	the	left	if	the	value	is	negative).

•			shadowOffsetY	The	vertical	offset	in	pixels	that	the	shadow	should	be	shifted
down	by	(or	up	if	the	value	is	negative).

•			shadowBlur	The	number	of	pixels	over	which	to	blur	the	shadow’s	outline.

•			shadowColor	The	base	color	to	use	for	the	shadow.	If	a	blur	is	in	use,	this	color
will	blend	with	the	background	in	the	blurred	area.

For	example,	in	the	following	(somewhat	longer	than	usual)	example	code,	four

elements	are	drawn	on	the	canvas	using	slightly	different	shadow	properties,	as	shown	in
Figure	13-5.

FIGURE	13-5	A	variety	of	elements	using	different	shadow	properties

I	used	a	variety	of	elements	in	this	example	as	they	illustrate	a	number	of	different
points.	So	let’s	look	at	them	in	turn,	starting	with	the	HTML5	logo.

The	first	thing	you	may	notice	with	this	image	is	that,	unlike	the	other	external
images,	this	one	doesn’t	have	a	colored	background	but,	instead,	features	a	transparent
one.	Note	how	the	shadow	properties	make	use	of	this	and	draw	the	shadow	only	around

the	nontransparent	areas.	This	image	also	has	the	largest	shadow	set,	with	vertical	and
horizontal	offsets	and	a	blur	area	of	eight	pixels,	and	the	background	color	used	for	the
shadow	is	black	(#000).

The	following	three	external	images	all	have	white	backgrounds	and	so	the	shadow
forms	around	the	outside	edges	of	each	image.	In	turn	these	images	use	shadow	offsets
and	blur	areas	of	six,	four,	and	two	pixels	respectively.	At	the	same	time	the	background
color	for	the	shadow	uses	increasingly	lighter	shades	of	gray	(#333,	#666,	and	#999).

The	word	“Hello”	is	drawn	in	blue,	38-point	Arial	text,	has	a	vertical	and	horizontal
shadow	offset	of	three	pixels,	and	a	blur	area	of	five	pixels.	See	how	the	shadow	lifts	it
from	the	background.

Finally,	the	rectangle	uses	a	line	width	of	three	pixels	and	is	drawn	in	red.	The	shadow
offsets	are	both	0	but	the	blur	area	is	six	pixels,	and	black	(#000)	has	been	used	for	the
shadow	background	color.	This	makes	the	shadow	appear	both	inside	and	outside	the
rectangle.

The	rectangle	at	the	bottom	right	of	Figure	13-5	illustrates	how	you	can	create	inner	shadows,	which	aren’t
directly	supported	by	the	HTML5	canvas.	Simply	draw	an	object	and	specify	a	shadow	that	will	appear	inside
that	shape.	Then	draw	another	shape	to	cover	over	the	outside	shadows	in	the	places	where	you	don’t	want	them.
Alternatively,	it	may	be	easier	to	simply	create	a	clipped	area	using	the	clip()	function,	to	prevent	any	drawing
such	as	the	shadows	from	being	made	outside	of	this	area.	If	you	do	so,	remember	to	reset	the	clipped	area	back
to	the	entire	canvas	when	you’re	done.

Pixel	Editing
We’ve	now	covered	just	about	every	conceivable	drawing	tool	you	could	want	for	getting
creative	with	the	HTML5	canvas,	but	there’s	one	more	trick	remaining	in	the	magician’s
hat,	and	that’s	direct	pixel	editing.

Using	the	getImageData(),	putImageData(),	and	createImageData()	functions,	in
conjunction	with	the	data[]	array,	you	can	directly	manipulate	the	canvas	at	pixel	level,
even	down	to	the	red,	green,	blue,	and	transparency	constituents	of	a	pixel.

The	getImageData()	Function
Let’s	start	by	creating	an	image	on	a	canvas	(as	shown	in	Figure	13-6)	and	then	grabbing	a
portion	of	it	with	getImageData(),	like	this:

FIGURE	13-6	An	image	has	been	loaded,	placed	on	the	canvas,	and	copied.

This	code	uses	the	usual	technique	of	loading	in	an	image	and	then	attaching	a
function	to	its	onload	event	so	that	the	code	in	the	function	is	called	only	when	the	image
is	fully	loaded.	Within	the	function	the	image	is	then	drawn	on	the	canvas	so	that	it	takes
up	its	left	half.	The	final	line	then	creates	an	object	called	imagedata	by	grabbing
information	from	the	canvas	starting	at	location	0,0	and	with	a	width	of	205	and	height	of
170	pixels.

At	this	point	the	image	data	that	constitutes	the	left	half	of	the	canvas	is	now	loaded
into	the	imagedata	array	and	it	can	be	accessed	from	JavaScript	to	read	or	write	its	pixel
data.	This	is	done	using	the	data[]	array,	which	is	a	property	of	imagedata.

The	data[]	Array
The	canvas	element	supports	millions	of	colors	(as	well	as	transparency)	for	each	pixel,
and	these	are	managed	by	allocating	four	locations	per	pixel	for	its	red,	green,	blue,	and
alpha	(transparency)	components,	each	accepting	a	value	of	between	0	and	255.	These
locations	are	stored	contiguously	in	the	data[]	array	so	that	the	pixel	at	the	top	left	of	the
canvas	(at	location	0,0)	can	be	accessed	as	follows:

Therefore	the	pixel	one	to	the	right	of	this	at	location	1,0	can	be	accessed	like	this:

Once	the	end	of	the	first	row	of	pixels	is	reached,	the	array	continues	with	the	next
line.	So,	for	a	205-pixel-wide	section	(such	as	the	one	grabbed	in	this	example),	there	are
4	×	205	locations	(or	820)	on	each	row.	Therefore	the	pixels	at	location	204,0	are	accessed
like	this:

And	the	pixels	at	location	0,1	are	accessed	as	follows:

Or,	if	you	don’t	mind	using	JavaScript	expressions,	you	can	address	the	array	using
code	such	as	the	following,	where	the	JavaScript	variables	x	and	y	contain	the	pixel	to
reference,	and	w	is	the	width	of	the	area	in	pixels	×	4:

The	putImageData()	Function
So	let’s	use	the	previous	information	to	convert	the	image	data	grabbed	from	the	left	half
of	the	canvas	into	grayscale,	by	averaging	all	the	color	values	and	setting	them	to	the	same
value	in	each	pixel.	For	example,	if	a	pixel	displays	as	yellow,	which	is	a	combination	of
red	and	green	(color	string	#FFFF00),	then	we	add	up	the	FF,	the	FF,	and	the	00	to	get	a
value	of	1FE	in	hexadecimal	(or	510	decimal,	since	FF	hexadecimal	is	255	in	decimal,	and
twice	that	is	510).

Next,	that	value	is	divided	by	3	(the	number	of	different	component	colors)	to	return
the	value	AA	(or	170	in	decimal),	which	is	then	assigned	to	all	components	of	the	pixel	as
the	hexadecimal	color	#AAAAAA.	Therefore	the	average	brightness	value	of	the	color	yellow
(#FFFF00	in	hexadecimal)	is	a	gray	tone	with	the	value	#AAAAAA,	in	which	each	color
component	has	a	value	of	AA	in	hexadecimal,	or	170	in	decimal.

Let’s	look	at	some	code	to	do	this	for	the	pixel	at	location	0,0:

The	variable	average	now	contains	the	average	value	of	the	red,	green,	and	blue
components	of	the	pixel’s	color.	In	this	instance	the	fourth	constituent	of	the	pixel	(which
is	the	transparency)	is	being	ignored.

Assuming	that	all	the	pixels	in	the	imagedata	object’s	data[]	array	have	been
averaged	in	this	manner,	the	updated	image	data	can	now	be	written	back	to	the	canvas
like	this,	as	shown	in	Figure	13-7	(although	you	won’t	see	much	difference	when	viewing
this	page	in	monochrome):
context.putImageData(imagedata,	205,	0)

FIGURE	13-7	The	left	half	has	been	copied,	grayed,	and	pasted	back	to	the	right.

Following	is	the	code	that	was	used	to	perform	this	transformation.	Be	warned,
though,	that	you	may	find	it	a	little	complicated,	and	use	of	techniques	such	as	this	is
recommended	only	if	you	have	an	understanding	of	JavaScript	programming:

By	simply	adding	an	extra	line	after	the	three	lines	of	code	that	calculate	the	average,
you	can	change	the	transformation	to	create	a	negative	grayscale	image,	by	subtracting	the
value	in	average	from	the	hexadecimal	value	FF	(255	in	decimal),	like	this:
average	=	0xFF	-	average

What	this	does	is	change	the	value	1	to	254,	17	to	238,	255	to	0,	and	so	forth,
inverting	the	image,	as	shown	in	Figure	13-8.

FIGURE	13-8	The	image	data	is	averaged,	inverted,	and	pasted	back.

You	can	do	other	things	too,	such	as	changing	the	overall	brightness	of	the	image
instead	of	inverting	it,	for	example,	by	using	this	line	instead,	which	adds	hexadecimal	50
(80	in	decimal)	to	each	color	component,	as	displayed	as	Figure	13-9.
average	+	=	0x50

FIGURE	13-9	The	grayscaled	image	has	been	lightened.

As	you	can	see,	once	you	have	access	to	this	data	in	the	data[]	array	of	the
imagedata	object,	you	can	perform	all	manner	of	transformations	on	it.	For	example,	you
can	mirror	or	flip	the	image,	use	matrixes	(an	advanced	programming	concept)	to	sharpen
or	blur	the	image,	and	so	on.	In	fact,	with	a	little	ingenuity,	you	can	do	many	of	the	things
a	professional	graphic	editing	program	like	Photoshop	can	do.

For	security	reasons,	some	browsers	will	not	allow	examples	such	as	the	preceding	to	directly	modify	data
this	way	unless	they	are	served	from	a	web	server.	That	means	the	examples	may	not	work	on	some	browsers	if
you	simply	load	them	in	from	a	file	system	for	testing.	Instead	ensure	you	load	them	using	a	server	domain	name,
or	http://localhost	for	a	local	server.

The	createImageData()	Function
You	don’t	have	to	create	an	imagedata	object	directly	from	a	canvas.	You	can	simply
create	a	new	one	with	blank	data	by	calling	the	createImageData()	function,	like	the
following,	which	creates	an	object	with	a	width	of	320	and	height	of	240	pixels:
imagedata	=	createImageData(320,	240)

Alternatively,	you	can	create	a	new	object	from	an	existing	object,	like	this:
newimagedataobject	=	createImageData(imagedata)

It’s	then	up	to	you	what	you	do	with	these	objects	to	add	pixel	data	to	them,	and	how
you	paste	them	on	the	canvas	or	create	other	objects	from	them.

Summary
You	now	have	all	the	basic	HTML5	canvas	skills	in	your	toolkit,	but	there	are	a	few	more
advanced	features	yet	to	come,	all	of	which	are	covered	in	the	final	lesson	of	this	part	of
the	book.	In	it	you’ll	learn	about	compositing,	transparency,	and	transformations,	which
you	can	use	to	create	just	the	professional	touch	you	need	in	your	canvases.

http://localhost

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			Which	function	is	used	to	draw	an	image	to	the	canvas?

2.			How	can	you	resize	an	image	when	it	is	drawn?

3.			How	can	you	ensure	that	an	image	is	ready	for	use	before	drawing?

4.			How	can	you	easily	copy	one	portion	of	a	canvas	to	another?

5.			Which	four	properties	are	used	to	add	and	modify	shadows	underneath	drawn
objects?

6.			How	can	you	grab	all	the	pixel	data	from	an	image	into	a	form	that	is
editable?

7.			Once	image	data	has	been	grabbed	from	a	canvas	and	placed	in	an	object,
what	sub-object	of	that	object	contains	the	actual	data?

8.			What	are	the	four	components	of	each	pixel?

9.			Which	function	is	used	to	write	image	data	to	the	canvas?

10.			How	can	you	create	a	new	object	containing	blank	image	data?

I

Compositing,	Transparency,
and	Transformations

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

n	this	final	lesson	on	the	HTML5	canvas,	I	show	you	how	to	use	the	remaining
advanced	graphical	features	not	yet	introduced,	including	compositing,	transparency,

and	transformations,	as	well	as	how	to	save	and	restore	context	between	operations.

Compositing	and	Transparency
Compositing	is	the	method	used	for	placing	an	element	on	the	canvas,	and	there	are	12
different	available	types,	which	have	the	effect	of	placing	new	elements	in	front	of	or
behind	existing	ones,	only	on	top	of	an	existing	element,	never	over	an	existing	element,
and	so	forth.

This	is	achieved	using	a	property	called	globalCompositeOperation,	providing	it
with	the	required	value	for	the	compositing	you	require.

The	globalCompositeOperation	Property
This	property	drastically	affects	the	way	new	elements	are	added	to	the	canvas.	It	supports
12	different	values	such	as	source-over,	which	is	the	default,	and	is	applied	like	this:
context.globalCompositeOperation	=	’source-over’

Following	is	a	breakdown	of	all	12	types	and	the	way	they	work.	You	should	read
them	in	conjunction	with	looking	at	Figure	14-1,	which	displays	an	example	of	each	type:

•			source-over	The	default.	The	source	image	is	copied	over	the	destination
image.

•			source-in	Only	parts	of	the	source	image	that	will	appear	within	the	destination
are	shown,	and	the	destination	image	is	removed.	Any	alpha	transparency	in	the
source	image	causes	the	destination	under	it	to	be	removed.

•			source-out	Only	parts	of	the	source	image	that	do	not	appear	within	the
destination	are	shown,	and	the	destination	image	is	removed.	Any	alpha	transparency
in	the	source	image	causes	the	destination	under	it	to	be	removed.

•			source-atop	The	source	image	is	displayed	where	it	overlays	the	destination.
The	destination	image	is	displayed	where	the	destination	image	is	opaque	and	the

http://www.mhprofessional.com/nixonhtml5

source	image	is	transparent.	Other	regions	are	transparent.

•			destination-over	The	source	image	is	drawn	under	the	destination	image.

•			destination-in	The	destination	image	displays	where	the	source	and
destination	image	overlap,	but	not	in	any	areas	of	source	image	transparency.	The
source	image	does	not	display.

•			destination-out	Only	those	parts	of	the	destination	outside	of	the	source
image’s	nontransparent	sections	are	shown.	The	source	image	does	not	display.

•			destination-atop	The	source	image	displays	where	the	destination	is	not
displayed.	Where	the	destination	and	source	overlap,	the	destination	image	is
displayed.	Any	transparency	in	the	source	image	prevents	that	area	of	the	destination
image	being	shown.

•			lighter	The	sum	of	the	source	and	destination	is	applied	such	that	where	they
do	not	overlap	they	display	as	normal,	but	where	they	overlap,	the	sum	of	both	images
is	shown,	but	lightened.

•			darker	The	sum	of	the	source	and	destination	is	applied	such	that	where	they	do
not	overlap	they	display	as	normal,	but	where	they	overlap,	the	sum	of	both	images	is
shown,	but	darkened.

•			copy	The	source	image	is	copied	over	the	destination.	The	destination	image	is
ignored.

•			xor	Where	the	source	and	destination	images	do	not	overlap,	they	display	as
normal.	Where	they	overlap	their	color	values	are	exclusive	ored.

FIGURE	14-1	The	12	different	compositing	types

Compositing	can	be	really	tricky	to	get	right,	so	my	advice	is	to	use	trial	and	error,	and	you	may	prefer	to
choose	a	compositing	type	based	on	the	examples	shown	in	Figure	14-1,	rather	than	on	the	descriptions	given
here.

The	globalAlpha	Property
When	drawing	an	element	to	the	canvas,	you	can	choose	how	much	transparency	to	give	it
by	providing	a	floating-point	value	to	the	globalAlpha	property	of	between	0	and	1
inclusive,	with	0	signifying	no	transparency,	1	being	totally	transparent,	and	(for	example)
0.5	being	half	transparent,	and	so	on,	like	this:

context.globalAlpha	=	0.5

In	Figure	14-2	a	value	of	0.5	has	been	applied	to	the	globalAlpha	property	of	the
previous	compositing	example	by	adding	the	preceding	line	of	code.

FIGURE	14-2	These	elements	have	been	drawn	using	50	percent	transparency.

Using	Transformations
There	are	four	functions	available	for	applying	transformations	to	elements	when	drawing
them	to	the	HTML5	canvas.	They	are:	scale(),	rotate(),	translate(),	and
transform(),	and	with	them,	if	your	element	is	not	quite	at	the	right	angle,	the	correct
size,	or	at	the	right	perspective,	you	can	tweak	it	until	you	get	it	just	right.

The	scale()	Function
As	you’ve	already	seen,	there	are	various	ways	you	can	scale	different	objects,	such	as	by
specifying	the	width	and	height	at	which	to	draw	them	on	the	canvas.	But	you	can	also	use
the	scale()	function	to	apply	a	global	scaling	factor	to	all	future	elements	drawn	on	the
canvas,	like	the	following,	which	sets	the	scaling	of	horizontal	dimensions	to	1.8	times,
and	vertical	to	1.5	times	the	original	size:
context.scale(1.8,	1.5)

Let’s	look	at	this	in	practice	with	the	following	code,	which	draws	a	rectangle,
increases	the	scaling	factors,	and	then	redraws	the	rectangle,	as	shown	in	Figure	14-3:

FIGURE	14-3	Two	identical	strokeRect()	calls	display	differently	due	to	scaling.

To	help	show	the	difference	between	the	rectangles,	the	original	(smaller)	one	is
displayed	in	red,	and	the	second	(larger)	one	in	blue.	The	arguments	used	in	the
parameters	to	the	calls	for	drawing	the	rectangles	are	identical	to	each	other,	but
the	scale()	call	between	the	two	ensures	that	the	second	rectangle	is	1.8	times	wider	and
1.5	times	deeper.

As	well	as	modifying	the	dimensions,	this	scaling	is	applied	to	the	origin	of	the
rectangles	(their	top-left	corners),	and	so	the	larger	one	is	offset	to	a	location	1.8	times	the
original	rectangle’s	horizontal	offset	of	20	pixels	(to	a	new	coordinate	of	36),	and	1.5
times	the	original	vertical	offset	of	20	pixels	(to	a	new	coordinate	of	30).	Thus	the	new
origin	for	the	larger	square	is	at	location	36,30,	rather	than	20,20.

Here’s	an	example	of	using	the	scale()	function	more	than	once	on	the	same
rectangle	(but	changing	the	colors	so	you	can	see	the	difference),	as	shown	in	Figure	14-4:

FIGURE	14-4	The	same	rectangle	scaled	up	three	times

In	this	lesson	I	have	selected	colors	that	are	reasonably	different	to	each	other	when	viewed	in	greyscale	(as
with	the	print	version	of	this	book).	You	can	easily	tell	which	grey	represents	which	color,	by	comparing	the
example	source	code	for	each	figure	with	the	image.

The	save()	and	restore()	Functions
After	drawing	elements	using	a	changed	scaling,	if	you	then	wish	to	draw	some	using	their
original	dimensions,	you’ll	need	to	issue	the	correct	scale()	call	with	negative	values	to
get	the	scaling	back	down	to	a	ratio	of	1:1.	But	in	the	preceding	example	where	the	scaling
ratio	was	increased	upward	three	times,	you	would	have	to	reduce	the	scaling	ratio	back
three	times	by	using	values	lower	than	1	that	achieve	the	same	amount	of	reduction,	like
this	(where	0.625	is	the	inverse	of	1.6):

Obviously,	this	is	somewhat	fiddly	in	that	it	involves	calculating	the	inverse	value,
and	also	repeating	a	function	call	unnecessarily.	Or,	you	could	calculate	the	full	inverse
value	for	a	single	call	to	scale(),	which	happens	to	be	0.24414	(arrived	at	by	multiplying

0.625	by	itself	three	times),	like	this:
context.scale(0.24414,	0.24414)

But	there’s	a	much	simpler	method	for	returning	the	scale	to	the	default	(along	with
many	other	properties	too),	and	that’s	to	issue	a	call	to	save()	before	making	any	changes
to	properties	or	calling	functions	such	as	scale(),	and	then	calling	restore()	afterward
to	reset	all	the	properties	to	the	way	they	were,	like	this	code,	which	uses	the	functions	to
restore	the	scaling	before	drawing	a	final	rectangle	in	orange	on	top	of	the	very	first	red
one,	as	shown	in	Figure	14-5:

FIGURE	14-5	The	scaling	is	saved,	and	then	restored	for	a	final	rectangle.

As	well	as	the	scaling	ratio,	several	other	properties	are	saved	and	restored	by	these
functions,	as	follows:

•			fillStyle

•			font

•			globalAlpha

•			globalCompositeOperation

•			lineCap

•			lineJoin

•			lineWidth

•			miterLimit

•			shadowBlur

•			shadowColor

•			shadowOffsetX

•			shadowOffsetY

•			strokeStyle

•			textAlign

•			textBaseline

•			scale()	properties

•			rotate()	properties

•			translate()	properties

•			transform()	properties

This	process	of	using	save()	and	restore()	is	known	as	saving	and	restoring	the
drawing	context.	You	can	call	the	save()	method	as	often	as	you	like	and	each	time	the
current	context	will	be	saved.	For	each	call	to	save,	you	can	issue	a	matching	restore()
call	to	return	the	context	to	the	previous	state.	This	enables	you	to	save	the	state	as	you
perform	more	steps	and	then	“unwind”	the	state	backward	as	each	step	completes.

The	rotate()	Function
Before	applying	an	element	to	a	canvas,	you	can	also	rotate	it	to	just	the	right	angle	with	a
call	to	rotate(),	like	this:
context.rotate(Math.PI	/	2)

The	value	passed	to	the	function	is	in	radians,	each	of	which	has	a	value	of	180	÷	Π
(or	about	57.3	degrees).	There	are	Δ	×	2	radians	in	a	complete	circle.

Radians	are	a	sensible	unit	of	measurement	because	Π	÷2	radians	is	a	quarter	circle	Π
radians	is	a	half	circle	Π	×	3	÷2	radians	is	three-quarters	of	a	circle,	and	Π	×	2	radians	is	a
full	circle.	I	leave	it	to	you	to	calculate	other	values	you	might	require,	but	generally	you
will	need	to	only	use	fractions	and	multiples	of	Π,	whose	value	you	can	get	by	using	the

JavaScript	property	of	Math.PI.

Therefore	the	previous	example	line	will	rotate	all	future	elements	placed	on	the
canvas	by	a	quarter	turn	(or	90	degrees).	Here’s	an	example	in	action,	as	seen	in	Figure
14-6,	in	which	a	square	has	been	rotated	nine	times:

FIGURE	14-6	A	square	is	rotated	nine	times.

Because	the	rotate()	function	is	called	prior	to	each	call	to	fillRect(),	the	rotation
factor	is	increased	for	each	one.	The	place	around	which	the	rotation	takes	place	is	the
origin	of	the	canvas,	at	location	0,0.

Working	with	Degrees
If	you	prefer	working	with	degrees	rather	than	radians,	you	can	convert	degrees	to	radians
using	the	formula	radians	=	degrees	×	0.01745324	(because	0.01745324	is	Π	÷180).	For
example,	if	you	want	a	quick	way	to	supply	a	value	of	90	degrees	to	a	function	that
requires	radians,	just	pass	the	expression	90	*	0.01745324	as	the	argument.	Or	you	can
create	a	function	to	do	this	to	JavaScript’s	maximum	level	of	accuracy,	like	this:

Then	(for	example)	just	supply	the	expression	degToRad(90)	to	the	function.

The	translate()	Function
If	you	prefer	to	rotate	an	object	around	another	axis	such	as	its	center,	you	need	to	also
call	the	translate()	function	to	move	the	origin	of	the	canvas	to	a	new	location,	around
which	the	elements	can	rotate,	like	this	line	for	example	(which	sets	it	to	the	coordinates
100,100):
context.translate(100,	100)

Let’s	use	this	in	a	simple	example	similar	to	the	previous	one,	but	in	which	the
squares	will	rotate	around	their	centers,	like	this	(as	shown	in	Figure	14-7):

FIGURE	14-7	Five	squares	are	rotated	and	overlaid	on	each	other.

If	you	look	closely	at	the	code	in	this	example,	you’ll	see	some	negative	values.	This
is	because	the	origin	of	the	canvas	is	no	longer	at	location	0,0—it	has	been	translated	to
the	location	280,85.	Therefore	all	function	calls	that	address	the	canvas	must	now	bear	this
new	origin	in	mind	and,	since	the	squares	are	120	pixels	wide	and	deep,	to	place	their
centers	over	the	new	origin	position,	they	must	be	located	at	a	point	relative	to	the	origin
of	-60,-60.

After	translating	the	origin	of	the	canvas,	you	may	wish	to	restore	it	to	0,0	for	future	access	of	the	canvas,	or
you	can	use	the	save()	and	restore()	functions	in	appropriate	places	to	automatically	restore	the	context.

The	transform()	Function

Finally,	in	this	part	of	the	book	on	the	HTML5	canvas,	comes	the	most	complicated	and
possibly	the	most	powerful	feature	of	all,	the	transform()	function,	with	which	you	can
stretch	and	transform	elements	in	many	different	ways	using	matrixes.

Interestingly,	the	previous	functions	that	manipulate	elements	all	actually	use	matrixes
to	achieve	their	effects,	and	you	can	do	the	same	yourself	using	the	transform()	method
to	either	emulate	or	improve	the	built-in	functions,	or	create	your	own	new	transforms.
For	example,	you	can	emulate	the	scale()	function	by	issuing	the	following	command:
context.transform(1.6,	0,	0,	1.6,	0,	0)

This	is	equivalent	to	the	following	call	because	the	first	and	fourth	parameters
represent	the	horizontal	and	vertical	scaling	respectively:
context.scale(1.6,	1.6)

Here’s	some	code	using	the	function	that	first	draws	a	50×50-pixel	square	in	green,
then	applies	a	scaling	factor	of	2	in	the	horizontal	direction	and	1.5	vertically	and	redraws
the	same	square,	as	shown	in	Figure	14-8.

FIGURE	14-8	The	original	square	is	redrawn	with	scaling	of	2	and	1.5.

This	is	the	same	as	using	the	following	command:
context.scale(2,	1.5)

The	second	and	third	parameters	to	the	transform()	function	control	shearing	of	the
element.	For	example,	to	shear	the	original	square	downward	(and	not	use	any	scaling),
you	could	issue	a	command	such	as	this:
context.transform(1,	0.7,	0,	1,	0,	0)

To	shear	to	the	right,	you	might	use	a	command	like	this:
context.transform(1,	0,	0.7,	1,	0,	0)

And	to	shear	in	both	directions,	you	might	use	a	command	such	as	this:
context.transform(1,	0.7,	0.7,	1,	0,	0)

In	fact,	here’s	some	example	code	that	illustrates	all	three	of	these	shears	at	once,	as
shown	in	Figure	14-9:

FIGURE	14-9	Three	different	shears	have	been	applied	to	the	square.

The	first	section	of	code	creates	the	initial	square.	Then	save()	and	restore()	are
used	for	the	following	sections	to	ensure	the	context	is	returned	for	reuse	after	each.	In	the
first	transform()	call,	the	bottom-left	shape	is	created.	The	top-right	one	is	created	next,
and	then	the	bottom-right	shape	is	created	out	of	a	combined	horizontal	and	vertical	shear.

You	may	use	different	values	than	0.7	in	these	functions,	and	that	includes	negative	values	to	shear	in	the
other	direction.

The	final	two	arguments	to	the	function	are	the	horizontal	and	vertical	offset	to	apply
to	the	element	when	it	is	drawn	on	the	canvas.	These	may	be	negative	as	well	as	positive
values.	Therefore	the	following	three	lines	of	code	modify	the	transform()	calls	in	the
previous	example	to	move	the	bottom-left	shape	to	the	left	by	30	and	down	by	20	pixels,
the	top-right	shape	to	the	right	by	20	and	up	by	30	pixels,	and	the	bottom-right	shape	both
down	and	to	the	right	by	25	pixels,	as	shown	in	Figure	14-10:

FIGURE	14-10	The	sheared	shapes	have	been	offset	away	from	the	original.

The	setTransform()	Function
As	well	as	using	the	save()	and	restore()	functions,	you	can	reset	the	transform	matrix
at	any	time	by	issuing	this	call:
context.transform(1,	0,	0,	1,	0	0)

Then	you	are	ready	to	issue	a	new	transform	of	your	choosing,	like	this,	for	example:
context.transform(1,	1.2,	-1.2,	1,	-20,	20)

However,	rather	than	issuing	two	separate	calls,	you	can	make	just	one	call	to	the
setTransform()	function	instead.	This	has	the	effect	of	resetting	the	transform	matrix	and
then	applying	the	requested	new	transform.	So,	in	place	of	the	two	preceding	calls,	for
example,	you	can	simply	make	the	following	call:
context.setTransform(1,	1.2,	-1.2,	1,	-20,	20)

For	more	information	about	transformation	matrixes,	there’s	a	comprehensive	article	at:
wikipedia.org/wiki/Transformation_matrix.

Summary
This	concludes	your	introduction	to	the	world	of	the	HTML5	canvas.	I	hope	you	have
found	it	enlightening	and	will	use	the	functions	it	provides	to	create	some	weird	and
wonderful	and	compelling	web	pages.	In	the	next	lesson	we’ll	move	on	to	seeing	how	a
browser	can	identify	your	location,	and	what	you	can	use	this	information	for.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			With	which	property	can	you	change	the	type	of	compositing	used	to	draw	to
the	canvas?

2.			How	can	you	set	the	transparency	of	future	drawing	operations?

3.			Which	function	lets	you	change	the	scale	for	future	drawing	operations?

4.			How	can	you	easily	resume	previous	settings	after	changing	the	scaling	one
or	more	times?

5.			Which	function	lets	you	rotate	the	angle	of	future	drawing	operations?

6.			How	many	radians	are	there	in	360	degrees?

7.			How	can	you	move	the	origin	of	future	drawing	operations	from	its	default
location	at	0,0?

8.			What	is	the	procedure	to	rotate	an	object	around	its	center	before	drawing	it	to
the	canvas?

9.			With	which	function	can	you	scale,	rotate,	and	skew,	all	at	the	same	time?

10.			Which	function	can	you	use	to	create	absolute	transformations	(as	opposed
to	relative	ones	from	the	current	transform	settings)?

PART	III

Advanced	HTML5

W

Supporting	Geolocation

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

ith	the	incredible	rise	in	popularity	of	smartphones,	the	ability	to	determine	the
location	of	a	device	has	become	almost	essential,	particularly	for	running	interactive

maps	and	navigation	software,	and	even	for	finding	local	Wi-Fi	hotspots,	or	services	such
as	restaurants	or	cash	dispensing	machines,	and	so	on.

Geolocation	is	also	being	used	more	and	more	to	try	to	sell	you	services	by	offering
promotions	in	stores	that	are	near	to	you,	and	a	little	more	benevolently	in	enabling	you	to
know	whether	friends	or	acquaintances	are	within	your	near	vicinity.	Thankfully,	you	are
in	control	of	when	you	allow	your	location	information	to	be	revealed,	so	you	can
minimize	any	privacy	or	security	risks	the	technology	could	create.

In	this	lesson	I	will	show	you	how	to	use	JavaScript	to	determine	the	location	of	any
geolocation-enabled	device,	as	long	as	the	user	allows	you.

Accessing	Geolocation	with	JavaScript
There	are	no	two	ways	about	it;	many	of	the	HTML5	features	are	so	advanced	that	they
cannot	be	accessed	by	simple	HTML.	Instead	you	do	have	to	learn	a	little	JavaScript.

So	far	in	this	course	I	have	done	my	best	to	teach	you	only	the	fewest	parts	of
JavaScript	you	need	in	order	to	work	through	the	examples.	And	the	same	goes	for	this
lesson.	However,	there	is	no	substitute	for	getting	a	good	book	(such	as	my	book
JavaScript:	20	Lessons	for	Successful	Web	Development)	or	taking	a	course	on	JavaScript,
if	you	wish	to	make	full	and	professional	use	of	features	such	as	geolocation.

The	geolocation	Property
The	first	thing	you	must	do	when	accessing	geolocation	is	to	determine	whether	or	not	it	is
available	by	testing	the	geolocation	property,	like	this	(preceding	the	property	with	the
navigator	object	name):

http://www.mhprofessional.com/nixonhtml5

This	code	uses	a	JavaScript	if()	statement	in	which	the	first	part	of	the	code	is
executed	if	geolocation	is	not	supported.	Typically	you	will	inform	the	user	that	their
browser	doesn’t	support	geolocation,	provide	some	other	kind	of	message,	or	perhaps
simply	do	nothing.	In	this	instance	I	have	chosen	to	pop	up	an	alert()	message	window
with	a	short	message.

If	geolocation	is	supported,	the	part	of	code	after	the	else	statement	is	executed,	and
that’s	where	your	code	that	uses	the	geolocation	information	goes,	as	follows.

The	getCurrentPosition()	Function
Once	you	know	that	a	browser	supports	geolocation,	you	may	ask	it	for	its	current	position
using	the	getCurrentPosition()	function,	like	this:
navigator.geolocation.getCurrentPosition(granted,	denied)

This	line	of	code	calls	the	browser’s	geolocation	software,	passing	it	the	names	of	two
new	functions	called	granted()	and	denied().	Because	the	function	names	(and	not	the
actual	function	contents)	are	being	passed	to	the	getCurrentPosition()	function,	no
parentheses	are	placed	after	the	names.

One	or	the	other	of	these	two	functions	will	be	called	back	by	the	browser	according
to	whether	the	user	grants	or	denies	you	the	use	of	its	location	data.	Therefore	both	of
these	routines	must	be	written.

A	granted()	Function
Here’s	what	an	example	granted()	function	might	look	like:

In	this	instance	I	have	opted	to	simply	display	the	returned	location	information	in	an
alert()	message	window.	You	will	be	more	likely	to	display	a	map	or	perform	other
functions	based	on	this	information.	As	for	the	user’s	location,	this	is	returned	in	the
following	two	properties:

The	former	property	holds	the	latitude	value	and	the	latter	the	longitude.

A	denied()	Function
If	the	user	has	chosen	not	to	allow	the	browser’s	location	data	to	be	revealed	to	your	code,
then	your	denied()	function	will	be	called,	and	an	error	code	will	be	given	to	state	why.

Here’s	an	example	denied()	function:

This	code	is	a	little	longer	because	it	processes	the	value	in	error.code,	which	can	be
a	number	between	1	and	4,	as	follows:

1.			Permission	Denied

2.			Position	Unavailable

3.			Operation	Timed	Out

4.			Unknown	Error

Again,	I	have	chosen	a	simple	alert()	message	to	provide	this	information.	In	your
code	(if	you	choose	to	give	a	message	at	all),	you	may	wish	to	display	a	simpler	and	more
friendly	phrase	such	as	“Geolocation	request	denied.”

In	the	Real	World
Here’s	a	complete	document	you	can	use	to	display	a	Google	map	of	a	user’s	current
location	in	a	<div>	element,	based	on	the	coordinates	returned	by	the	browser’s
geolocation	code.	If	permission	is	not	given	or	the	browser	doesn’t	support	geolocation,
then	a	message	stating	that	is	provided	by	writing	directly	into	the	contents	of	the	<div>
tag	with	the	id	of	status	using	its	innerHTML	property.

When	a	web	page	containing	this	code	is	loaded	into	a	browser,	the	first	thing	that
happens	is	a	request	is	made	to	the	user.	Depending	on	the	browser	and	operating	system
in	use,	this	may	be	presented	in	a	variety	of	different	ways.	On	Google	Chrome,	for
example,	it	looks	like	Figure	15-1.

FIGURE	15-1	The	geolocation	request	displayed	by	Google	Chrome

If	permission	is	not	given,	then	only	a	short	message	will	be	displayed,	but	if	it	is

given,	then	the	result	will	be	similar	to	Figure	15-2.

FIGURE	15-2	Permission	has	been	granted	and	a	map	is	displayed.

When	using	the	Google	Maps	service,	you	can	modify	the	arguments	to	the	gopts
object	(highlighted	in	bold	in	the	following	code)	to	modify	the	type	of	map	displayed:

The	variables	you	can	alter	are:

•			Lat	and	long	These	can	be	as	retrieved	from	the	user’s	device	through
geolocation,	or	coordinates	you	have	determined	and	wish	to	supply	(perhaps	to
provide	a	map	of	your	employer’s	place	of	work)

•			zoom	This	can	be	a	value	between	1	for	fully	zoomed	out	and	20	for	fully
zoomed	in.

•			mapTypeId	This	can	be	google.maps.MapTypeId.SATELLITE	for	a	satellite	map,
or	replace	the	final	SATELLITE	property	with	ROADMAP	for	a	road	map,	or	with	HYBRID
for	a	combined	road	and	satellite	map.

You	can	also	use	Bing	maps	for	mapping	if	you	prefer,	but	it’s	a	little	more	involved.	For	information	on	how
to	do	so,	please	refer	to	http://tinyurl.com/bingmapsapi.

http://tinyurl.com/bingmapsapi

The	GPS	Service
The	GPS	(Global	Positioning	System)	service	consists	of	multiple	satellites	orbiting	the
earth	whose	positions	are	very	precisely	known.	When	a	GPS-enabled	device	tunes	in	to
these	satellites,	the	different	times	at	which	signals	from	these	various	satellites	arrive
enable	the	device	to	know	where	it	is	to	within	just	a	few	feet.

This	is	achieved	by	the	fact	that	the	speed	of	light	(and	radio	waves)	is	a	known
constant,	and	the	time	it	takes	a	signal	to	get	from	a	satellite	to	a	GPS	device	precisely
indicates	the	satellite’s	distance.	By	making	a	note	of	all	the	different	times	at	which
signals	arrive	from	different	satellites,	a	simple	calculation	lets	the	device	derive	each	of
the	satellite’s	positions	relative	to	each	other,	and	therefore	very	closely	triangulate	the
position	of	the	device	relative	to	them.

Many	mobile	devices	such	as	phones	and	tablets	have	GPS	chips	and	can	provide	this
information.	But	some	don’t,	others	have	them	turned	off,	and	others	may	be	used	indoors
where	they	are	shielded	from	the	GPS	satellites,	and	therefore	cannot	receive	any	signals.
In	these	cases,	additional	techniques	may	be	used	to	attempt	to	determine	your	location.

Other	Location	Methods
First,	if	your	device	has	mobile	phone	hardware,	it	may	attempt	to	triangulate	its	location
by	checking	the	timings	of	signals	received	from	the	various	communications	towers	with
which	it	can	communicate	(and	whose	positions	are	very	precisely	known).	If	there	are	a
few	towers,	this	can	get	almost	as	close	to	your	location	as	GPS.	But	where	there’s	a
single	tower,	the	signal	strength	is	used	to	determine	a	radius	around	the	tower,	and	the
circle	it	creates	represents	the	area	in	which	you	are	likely	to	be	located.	This	could	place
you	anywhere	within	a	mile	or	two	of	your	actual	location,	down	to	within	a	few	tens	of
feet.

Failing	that,	there	may	be	known	Wi-Fi	access	points	within	range	of	your	device
whose	positions	are	known,	and	since	all	access	points	have	a	unique	identifying	address
called	a	MAC	(Media	Access	Control)	address,	a	reasonably	good	approximation	of
location	can	be	obtained,	perhaps	to	within	a	street	or	two.

And	if	that	fails,	the	IP	(Internet	Protocol)	address	used	by	your	device	can	be	queried
and	used	as	a	rough	indicator	of	your	location.	Often	though,	this	provides	only	the
location	of	a	major	switch	belonging	to	your	Internet	provider,	which	could	be	dozens	or
even	hundreds	of	miles	away.	But	at	the	very	least,	your	IP	address	can	narrow	down	the
country,	and	sometimes	the	region	you	are	in.

Your	IP	address	is	commonly	used	by	media	companies	that	restrict	playback	of	their	content	by	territory.
However,	some	people	are	able	to	set	up	proxy	servers	that	use	a	forwarding	IP	address	in	the	country	that	is
blocking	them	to	fetch	and	pass	content	through	the	blockade	back	to	their	browser.	Therefore,	you	should	be
aware	that	if	you	locate	someone	by	IP	address,	the	country	identification	may	not	necessarily	be	reliable.

Using	geolocation	will	enable	you	to	improve	the	features	you	offer	to	your	mobile
device	web	visitors,	but	not	so	much	for	desktop	users,	whose	locations	will	remain
difficult	to	ascertain.

Nevertheless,	used	sensibly	and	perhaps	even	in	conjunction	with	asking	your	users
directly	to	correct	any	such	misinformation	in	order	for	you	to	provide	better	service,
geolocation	is	a	great	feature.	And	if	you	know	your	user	has	an	iPhone,	Android,	or
Windows	phone,	you	can	be	almost	certain	that	you’re	receiving	the	right	data.

Summary
And	that’s	all	there	is	to	geolocation,	so	this	is	a	short	and	sweet	lesson,	but	hopefully	one
you	have	found	very	useful.	In	the	next	lesson	I’ll	take	you	through	the	extensions	that
HTML5	has	made	to	HTML	forms.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			What	is	the	most	common	form	of	geolocation	positioning	hardware?

2.			How	can	you	determine	whether	a	browser	supports	geolocation?

3.			Which	method	do	you	call	to	request	location	data	from	a	browser,	and	what
values	should	be	passed	to	this	function?

4.			If	the	user	grants	permission	for	you	to	access	their	location,	how	will	that
data	be	supplied?

5.			If	the	user	doesn’t	grant	permission	to	access	their	location,	what	information
is	supplied	instead?

6.			If	you	are	using	location	data	to	display	a	Google	Map,	what	is	the	URL	of
the	API	(Application	Programming	Interface)	you	should	call	in	a	<script>	tag?

7.			How	do	you	pass	the	latitude	and	longitude	to	display	to	the	Google	Maps
API?

8.			What	values	can	you	supply	to	the	Google	Maps	zoom	property	to	choose	the
zoom	level?

9.			What	types	of	Google	Maps	can	be	displayed,	and	how?

10.			Why	are	IP	addresses	not	a	very	accurate	form	of	geolocation?

I

Building	Advanced	Forms

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

f	you’ve	ever	used	HTML	forms,	you’ll	be	aware	of	how	limiting	they	can	be.	Yes,	they
do	provide	the	facility	to	create	different	types	of	fields	and	buttons,	but	that’s	about	it.

There	are	no	date	pickers	for	easy	selection	of	dates	from	pop-up	menus.	There’s	no
built-in	verification	of	data	types	such	as	numbers,	strings,	or	e-mail	addresses,	and	there’s
no	built-in	ability	to	match	patterns	in	regular	expressions.

But	with	HTML5	all	these	problems	and	several	more	have	been	addressed,	making
completing	forms	easier	than	ever	for	users,	and	also	much	simpler	for	web	developers	to
create.

New	Form	Attributes
HTML5	is	still	very	much	an	evolving	specification	that	browsers	are	implementing	only
piecemeal.	Therefore	some	features	are	available	in	some	browsers,	and	others	in	different
ones.

And	it’s	not	always	the	same	browsers	that	haven’t	yet	caught	up	with	the	spec
because,	as	of	this	writing,	all	of	the	latest	versions	of	all	the	main	browsers	omit	at	least
three	of	these	attributes,	and	some	omit	as	many	as	ten.

Nevertheless,	as	time	passes,	browsers	will	implement	more	and	more	of	the	HTML5
spec,	and	therefore	this	lesson	provides	the	information	you	need	for	using	these	features.

The	autocomplete	Attribute
The	autocomplete	attribute	can	be	applied	to	the	<form>	tag	or	any	of	the	color,	date,
email,	password,	range,	search,	telephone,	text,	or	url	types	of	the	<input>	tag.	Valid
arguments	for	this	attribute	are	on	(the	default)	and	off.

When	autocomplete	is	on,	any	field	with	an	id	that	has	previously	had	an	input
entered	will	remember	its	value	and	offer	it	as	a	suggested	value,	saving	you	from	having
to	enter	it	again.

When	autocomplete	is	off,	this	behavior	is	disabled.	When	applied	to	a	<form>	tag,
the	attribute	affects	all	relevant	fields	within	a	form.	When	applied	to	an	<input>	tag,	only
that	field	is	affected.	Here	are	two	examples	of	using	the	attribute:

http://www.mhprofessional.com/nixonhtml5

The	autofocus	Attribute
The	autofocus	attribute	can	be	applied	to	any	<input>	tag	to	give	its	field	automatic
focus	when	a	page	loads.	This	has	the	effect	of	placing	the	cursor	in	an	input	field	ready	to
type,	or	selecting	any	other	type	of	field	ready	to	change	it,	and	is	activated	like	this:
<input	type=’text’	name=’field’	autofocus=’autofocus’>

This	feature	is	supported	by	the	latest	versions	of	all	major	browsers,	but	not	mobile	browsers,	as	it	would	be
a	distraction	calling	up	the	onscreen	keyboard	when	often	it	wouldn’t	be	wanted.

To	achieve	the	same	effect	in	older	browsers,	you	can	add	some	JavaScript	to	the
<body>	tag	of	your	web	page,	like	this:
<body	onload=’document.forms.myform.myfield.focus()’<

Then	make	sure	your	form	looks	something	like	this:

To	make	this	work,	both	the	<form>	and	the	<input>	tags	must	each	be	given	a	unique
id.	In	this	case	I	chose	the	name	myform	for	the	form	and	myfield	for	the	field.	These	are
then	easily	referenced	in	the	argument	to	the	onload	event	of	the	<body>	tag,	which	calls
the	focus()	function	on	the	field	when	the	web	page	has	loaded.

The	form	Attribute
With	the	form	attribute,	it	is	not	necessary	for	you	to	place	<input>	tags	within	the	form	to
which	they	apply.	Instead,	as	long	as	you	give	a	form	an	id,	you	can	specify	that	value	as
the	argument	for	a	form	attribute.

For	example,	the	following	code	opens	and	then	closes	a	form	with	the	id	of	myform,
and	the	<input>	tag	field	is	attached	to	it	only	after	the	form	is	closed:

This	feature	is	not	supported	by	Internet	Explorer	at	the	time	of	writing.

Form	Overrides
Several	new	attributes	have	been	added	to	HTML	in	version	5	that	allow	you	to	override
various	form	settings	such	as	the	action	and	enctype	properties,	but	so	far	only	a	few
browsers	have	implemented	them.

Form	overrides	work	with	either	of	the	submit	or	image	types	of	the	<input>	tag,	and
are	supported	in	the	latest	versions	of	all	major	browsers.

The	formaction	Attribute
The	formaction	attribute	is	a	form	override	that	lets	you	change	the	action	attribute	to	a
different	destination.	For	example,	in	the	following	code,	the	form	will	not	post	to	the
program	prog.php	as	specified	in	the	<form>	tag,	and	will	instead	post	to	prog2.php:

This	attribute	can	be	particularly	useful	when	you	wish	to	provide	more	than	one
submit	button,	each	with	a	different	destination	program	to	which	the	form	should	submit.

The	formenctype	Attribute
The	formenctype	attribute	is	a	form	override	that	lets	you	change	the	encoding	type	of	a
form	(the	enctype	attribute),	in	a	similar	manner	to	the	formaction	override.

The	formmethod	Attribute
The	formmethod	attribute	is	a	form	override	that	lets	you	change	the	posting	method	(the
post	or	get	value	of	the	method	attribute),	in	a	similar	manner	to	the	formaction	override.

The	formnovalidate	Attribute
The	formnovalidate	attribute	is	a	form	override	that	lets	you	change	the	novalidate
attribute,	in	a	similar	manner	to	the	formaction	override.

The	formtarget	Attribute
The	formtarget	attribute	is	a	form	override	that	lets	you	change	the	target	attribute,	in	a
similar	manner	to	the	formaction	override.

The	height	and	width	Attributes
The	height	and	width	attributes	can	be	applied	to	the	image	type	of	the	<input>	tag	to
change	its	height	and	width.	You	use	the	attributes	like	this,	with	a	result	such	as	that	in
Figure	16-1:
<;input	type=’image’	src=’finger.png’	width=’117’	height=’100’>

FIGURE	16-1	Resizing	an	image	used	in	an	input

The	list	Attribute	and	<datalist>	and	<option>	Tags
Some	input	fields	support	lists	and	the	list	attribute	can	be	used	to	reference	them.	For
example,	the	following	HTML	uses	this	attribute,	along	with	the	new	<datalist>	tag,	to
offer	a	selection	of	URLs	from	which	to	choose:

The	value	supplied	to	the	list	attribute	should	be	the	id	name	of	a	<datalist>	tag.
This	feature	works	a	bit	like	the	autocomplete	attribute,	except	that	you	define	the	list	of
suggested	choices	that	appear	when	the	input	is	given	focus.

Currently	this	feature	is	not	supported	in	Safari,	but	you	can	still	use	it	in	your	web	pages	(as	shown	in	Figure
16-2)	because	Safari	will	simply	not	display	the	list	of	suggestions,	but	for	other	browsers,	your	web	forms	that
use	it	will	be	quicker	to	fill	in.

FIGURE	16-2	Prepopulating	input	using	the	list	attribute	and	<datalist>	tag

The	min	and	max	Attributes
The	min	and	max	attributes	are	used	to	specify	minimum	and	maximum	value	for	input
types	that	contain	numbers	or	dates.	Here	is	an	example	(the	result	of	which	can	be	seen	in
Figure	16-3,	in	which	the	up	and	down	selectors	can	be	seen	to	the	right	of	the	input):
<input	type=’time’	name=’deliver’	value=’09:00’	min=’09:00’	max=’17:00’>

FIGURE	16-3	Using	the	min	and	max	properties

In	addition	to	using	the	mouse	to	change	the	input	up	or	down	(within	the	minimum
and	maximum	values),	a	valid	input	between	these	values	can	be	directly	entered,	or	the
up	and	down	keyboard	buttons	can	be	used	to	scroll	through	the	supported	values.

I	don’t	recommend	you	rely	on	this	type	of	validation	yet,	though,	since	neither	Firefox	nor	Internet	Explorer
support	its	use	(the	attributes	will	be	ignored).

The	multiple	Attribute
The	multiple	attribute	allows	you	to	accept	multiple	values	for	an	<input>	tag	that	uses
any	of	the	email,	range,	or	file	types.	It	works	in	the	latest	versions	of	all	major
browsers	except	for	Internet	Explorer	and	Opera.	You	will	enable	it	like	this:
<input	type=’file’	name=’images’	multiple=’multiple’>

Then,	when	the	browse	box	pops	up,	multiple	files	can	be	selected	at	a	time	(normally
in	conjunction	with	the	ctrl	key).	On	browsers	that	don’t	yet	support	this	feature,	only
single	files	can	be	selected.

Because	browsers	that	don’t	support	this	feature	will	only	allow	single	items	to	be	selected,	until	all	browsers
support	it,	this	feature	is	not	safe	to	use	if	you	are	requiring	multiple	inputs	(rather	than	simply	allowing	them).

The	novalidate	and	formnovalidate	Attributes
These	Boolean	attributes	specify	that	a	form	should	not	be	validated	when	it	is	submitted.
The	novalidate	attribute	is	applicable	to	the	<form>	tag	and	the	formnovalidate	attribute
is	applicable	to	only	the	submit	and	image	types	of	the	<input>	tag.	You	use	novalidate
like	this:

And	you	use	formnovalidate	like	this:

At	the	time	of	writing	Safari	does	not	yet	support	this	feature,	but	once	it	is	implemented	across	all	browsers,
you	may	well	choose	to	use	it	all	the	time,	at	least	until	the	validation	features	in	HTML5	are	much	better	than
those	currently	offered.	If	you	are	looking	for	reliable	in-browser	form	validation,	there	are	many	libraries
available,	such	as	the	open	source	tool	at	livevalidation.com.

The	pattern	Attribute
The	pattern	attribute	lets	you	specify	a	regular	expression	with	which	an	input	field
should	be	evaluated.	It	can	be	applied	to	any	<input>	tag	that	uses	any	of	the	email,
password,	search,	telephone,	text,	or	url	types.	For	example,	to	allow	only
alphanumeric	characters,	the	dash,	and	underline	in	a	field,	you	might	use	the	following
HTML:
<input	type=’text’	name=’username’	pattern=’[\w\-]{6,16}’>

The	pattern	’[\w\-]{6,16}’	tells	the	browser	to	accept	only	the	following:

•			\w	The	letters	a-z	and	A-Z,	the	digits	0-9,	and	the	underline	character

•			\-	The	dash	character

•			{6,16}	Between	6	and	16	characters	inclusive

Currently	this	feature	is	not	supported	by	Safari,	and	therefore	it	cannot	be	relied	upon	for	reliable	in-browser
validation.	I	would	also	add	that	Chrome	simply	refuses	to	submit	a	form	when	a	pattern	doesn’t	match—giving
you	no	idea	why,	while	Opera	says	“[input]	is	not	in	the	format	this	page	requires!”	Therefore	I	recommend
ignoring	this	feature	until	such	time	as	it	is	available	on	all	browsers,	and	has	matured	to	the	point	of	actually
informing	users	what	they	need	to	enter.

The	placeholder	Attribute
The	placeholder	attribute	lets	you	place	a	helpful	hint	in	any	blank	input	field,	with
which	you	can	help	explain	to	users	what	they	should	enter.	You	use	it	like	this:

The	size	attribute	value	of	35	ensures	that	there’s	enough	room	for	the	placeholder
text	which,	as	long	as	nothing	has	yet	been	entered	into	a	field,	is	displayed	in	a	light
color,	as	shown	in	Figure	16-4.

FIGURE	16-4	Displaying	a	placeholder

As	soon	as	the	field	is	given	focus	and	a	user	starts	typing,	the	prompt	disappears.
This	attribute	can	be	applied	to	any	of	the	email,	password,	search,	telephone,	text,	and
url	types	of	the	<input>	tag.

The	required	Attribute
The	required	attribute	is	used	to	ensure	that	a	field	has	been	completed	before	a	form	is
submitted.	You	use	it	like	this:
<input	type=’number’	name=’age’	required=’required’>

The	step	Attribute
The	step	attribute	is	used	to	specify	a	step	value	for	input	types	that	contain	numbers	or

dates.	Here’s	how	you	might	use	it	in	conjunction	with	the	min	and	max	attributes:

The	value	can	be	any	positive	integer	and,	in	the	case	of	times,	its	value	is	in	seconds.
The	result	of	using	the	preceding	HTML	is	shown	earlier	in	Figure	16-3.	By	clicking	on
the	up	and	down	icons,	or	by	using	the	up	and	down	cursor	keys,	it	is	possible	to	scroll
through	the	hours	to	make	a	selection.

At	the	time	of	writing,	this	feature	is	not	yet	supported	by	Firefox	or	Internet	Explorer.

New	Form	Input	Types
Over	the	years,	it	has	been	discovered	that	there	are	many	more	types	of	input	a	website
might	ask	for	than	the	simple	selection	types	supported	by	HTML	4.01.	In	fact,	there	are
now	16	new	types	of	input	available	in	HTML5.

What	they	provide	is	tighter	control	over	user	input,	along	with	built-in	validation.
The	only	drawback	is	that	these	input	types	are	not	widely	implemented.	Nevertheless,
you	can	still	use	all	of	them,	even	on	unsupported	browsers,	as	they	will	fall	back	to	being
regular	text	fields.	If	you	use	these	types	over	time,	then	as	other	browsers	catch	up,	your
forms	will	automatically	become	easier	to	complete.

Mobile	devices	should	generally	be	aware	of	some	of	these	input	types	in	the	sense	that	they	will	change	the
keyboard	type	presented	to	you	accordingly.	For	example,	the	email	input	type	will	ensure	that	an	@	symbol	is
included	in	the	main	set	of	characters,	the	number	type	ensures	that	number	keys	are	visible,	and	the	tel	type
displays	a	telephone	keypad.

The	color	Input	Type
The	color	input	type	calls	up	a	color	picker	so	you	can	simply	click	on	the	color	of	your
choice.	You	use	it	like	this:
Enter	your	preferred	color	<input	type=’color’	name=’favcolor’>

This	feature	is	only	available	in	Chrome	and	Opera	at	the	time	of	writing.

Date	and	Time	Pickers
Date	and	time	pickers	are	similar	to	the	color	input	type	in	that	eventually	you’ll	be	able

to	click	on	one	and	a	calendar	will	pop	up,	from	which	you	can	select	a	date	or	time,
as	shown	in	Figure	16-5.

FIGURE	16-5	Date	pickers	in	Google	Chrome

Currently	these	pickers	do	not	work	in	Firefox	or	Internet	Explorer,	so	my	advice	is	to	ignore	these	features
until	they	mature	and	work	properly	on	all	the	main	browsers;	in	the	meantime,	there	are	plenty	of	JavaScript	date
picker	libraries	you	can	find	via	search	engines.

The	date	Input	Type
The	date	input	type	selects	a	date	and	is	used	like	this:
<input	type=’date’	name=’thedate’>

The	returned	value	will	be	of	the	form	YYYY-MM-DD.

The	month	Input	Type
The	month	input	type	selects	a	month	and	is	used	like	this:
<input	type=’month’	name=’themonth’>

The	value	returned	is	of	the	form	YYYY-MM.

The	time	Input	Type
The	time	input	type	returns	a	time	in	the	24-hour	form	HH:MM.	You	use	it	like	this:
<input	type=’time’	name=’thetime’>

The	week	Input	Type
The	week	input	type	returns	the	week	in	the	form	YYYY-WNN	(for	example	2018-W06).
You	use	it	like	this:
<input	type=’week’	name=’theweek’>

The	datetime	Input	Type
The	datetime	input	type	returns	the	date	and	time	in	UTC	(Coordinated	Universal	Time),
which	will	be	almost	the	same	as	Greenwich	Mean	Time,	give	or	take	a	second.	The
returned	value	will	be	of	the	form	YYYY-MM-DDTHH:MMZ	(for	example	2018-10-
15T15:35Z).	You	use	it	like	this:
<input	type=’datetime’	name=’dateandtime’>

This	type	is	not	supported	in	Chrome.

The	datetime-local	Input	Type
The	datetime-local	input	type	returns	the	user’s	local	date	and	time.	The	returned	value
will	be	of	the	form	YYYY-MM-DDTHH:MM	(for	example,	2018-10-15T15:35)	and	will
contain	no	time	zone	information.	You	use	it	like	this:
<input	type=’datetime-local’	name=’localdateandtime’>

The	email	Input	Type
The	email	validation	type	ensures	that	the	browser	knows	an	e-mail	address	is	expected
and	if	necessary	can	cater	to	it	(for	example,	by	including	the	@	character	on	the	pop-up
keyboard	of	a	mobile	phone):
<input	type=’email’	name=’emailaddress’>

This	type	is	not	supported	by	Safari.

The	number	Input	Type
The	number	validation	type	ensures	that	only	numbers	can	be	entered.	You	use	it	like	this:
<input	type=’number’	name=’age’>

Small	up	and	down	icons	appear	next	to	the	input	to	allow	changing	a	default	value	by

clicking	them,	or	by	using	the	up	and	down	cursor	keys.

The	range	Input	Type
The	range	input	type	causes	a	range	widget	to	be	displayed	that	you	can	slide	to	select	any
value	between	a	minimum	and	maximum,	and	with	a	specified	start	and	step	value.

It	is	used	like	this,	and	the	result	is	shown	in	Figure	16-6.
<input	type=’range’	name=’num’	min=’0’	max=’255’	value=’128’	step=’1’>

FIGURE	16-6	A	range	widget	in	Google	Chrome

The	search	Input	Type
When	you	specify	the	search	type,	browsers	are	supposed	to	tailor	the	input	box	to
provide	features	that	might	include	search	suggestions	(in	a	similar	way	to	Google
Search),	an	icon	with	which	to	empty	the	field,	and	possibly	styling	changes	to	alert	you	to
the	type	of	input.

The	only	enhancements	are	an	X	icon	for	clearing	the	input,	and	a	rounded	input	field
(on	Mac	Safari	only).	But	there’s	no	harm	in	you	using	this	input	type	right	now,	as	other
browsers	simply	display	the	default	text	field,	and	when	they	support	the	feature,	your
web	pages	will	already	be	enhanced	for	it.

You	use	the	attribute	like	this:
<input	type=’search’	name=’searchphrase’>

As	of	writing,	this	has	been	implemented	only	on	Safari	and	Chrome.

The	tel	Input	Type
The	tel	input	type	informs	the	browser	that	a	telephone	number	is	to	be	expected.
Currently	it	is	used	by	iOS	devices	when	the	field	is	selected	to	bring	up	a	telephone
number	keypad	in	place	of	a	keyboard:
<input	type=’tel’	name=’phone’>

The	url	Input	Type
As	with	the	tel	input	type,	the	url	type	is	also	there	to	tell	the	browser	about	the	type	of
data	to	be	expected.	In	the	case	of	the	iPhone	and	other	iOS	devices,	this	ensures	that	the
.,	/	and	.com	buttons	are	displayed.

Other	browsers	may	also	offer	enhancements	for	this	type	in	the	future,	which	is
created	with	the	following	HTML:
<input	type=’url’	name=’webpage’>

Summary
As	you	will	have	noticed,	forms	are	probably	the	subsection	of	the	HTML5	specification
that	have	been	the	least	worked	on	by	the	browser	developers.	This	is	a	shame	because
submitting	data	is	one	of	the	most	common	and	important	tasks	people	do	on	the	web.
Still,	HTML5	browser	support	is	improving,	and	you	can	keep	up	with	the	latest
developments	at	tinyurl.com/h5forms.	In	the	next	lesson	we’ll	take	a	look	at	local	storage
and	cross	document	messaging.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			How	can	you	provide	access	to	typing	into	an	input	field	without	the	user	first
having	to	click	it?

2.			With	which	attribute	can	you	allow	previous	values	that	have	been	entered	for
the	current	input	field’s	name	to	be	selected	by	the	user?

3.			What	is	the	purpose	of	the	list	attribute?

4.			How	can	you	set	minimum	and	maximum	limits	for	an	input?

5.			Which	attribute	enables	uploading	of	more	than	one	file	at	a	time	via	a	form?

6.			How	can	you	place	text	in	an	empty	input	field	to	prompt	the	user	for	the	type
of	input	expected?

7.			Which	attribute	can	you	use	to	ensure	that	an	input	must	be	completed	before
a	form	is	submitted?

8.			What	does	the	attribute	pattern=’[\w]{5,10}’	do	to	the	input	to	which	it	is
applied?

9.			How	can	you	offer	a	color	picker	in	an	input	(to	browsers	that	support	it)?

10.			How	can	you	call	up	a	calendar	date	picker	in	an	input	(for	browsers	that
support	it)?

Y

Implementing	Local	Storage	and	Cross-
Document	Messaging

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

ou	are	probably	quite	familiar	with	cookies:	small	units	of	data	that	are	stored	locally
by	your	browser,	which	contain	information	helpful	to	using	a	website,	such	as	your

login	details	(to	save	you	from	continuously	re-entering	them),	and	which	are	often	also
used	somewhat	more	intrusively	to	track	your	surfing	habits.

Local	storage	is	similar	to	cookies,	but	it	supports	storing	much	larger	amounts	of	data
and	also	supplies	a	local	database	engine	to	make	saving	and	retrieving	data	much	easier.

The	benefits	of	this	are	more	powerful	web	apps,	with	more	data	residing	on	your
computer,	rather	than	on	servers	somewhere	else	in	the	world.	For	example,	a	website	that
manages	your	TV	viewing	could	store	all	your	favorite	programs	in	a	local	database,	so
that	when	you	open	the	app,	it	only	has	to	check	a	website	of	listings	to	see	when	these
programs	are	on	next,	and	on	which	channels.	This	takes	a	strain	off	the	web	server	by
leaving	the	data	distributed	among	users.

Another	benefit	is	that	such	local	databases	can	be	accessed	from	a	local	web	page
using	JavaScript,	meaning	that	the	data	can	be	used	by	the	app	even	where	there	is	no
Internet	connection	(in	this	example	case,	as	long	as	the	TV	listings	have	also	been
downloaded).

Using	Local	Storage
In	the	past	the	only	way	you	could	store	data	on	a	user’s	computer	was	with	cookies,
which	were	limited	in	number	and	could	hold	only	4K	each.	They	also	have	to	be	passed
back	on	every	page	load	or	reload	and,	unless	your	server	uses	SSL	(Secure	Sockets
Layer)	encryption	(like	with	HTTPS),	each	time	a	cookie	is	transmitted	it	travels	in	the
clear.

But	with	HTML5	you	have	access	to	a	much	larger	local	storage	space	(typically
between	5MB	and	10MB	per	domain	depending	on	the	browser)	that	remains	over	page
loads	and	between	website	visits	(and	even	after	powering	a	computer	down	and	back	up
again),	and	which	is	not	sent	to	the	server	on	each	page	load.

You	handle	the	data	in	pairs	consisting	of	a	key	and	its	value.	The	key	is	the	name
assigned	for	referencing	the	data	and	the	value	can	hold	any	type	of	data,	but	it	is	saved	as
a	string.

http://www.mhprofessional.com/nixonhtml5

All	data	is	unique	to	the	current	domain.	Any	local	storage	created	by	websites	with
different	domains	is	separate	from	the	current	local	storage	for	security	reasons,	and	is	not
accessible	by	any	domain	other	than	the	one	that	stored	the	data.

For	security	reasons,	local	storage	will	work	only	when	a	web	document	is	viewed	after	being	sent	via	a	web
server.	You	cannot	test	documents	that	implement	this	feature	from	a	local	file	system.

Storing	and	Retrieving	Local	Data
To	access	local	storage,	you	use	methods	of	the	localStorage	object	such	as	setItem(),
getItem(),	removeItem(),	and	clear().	For	example,	to	locally	store	a	user’s	username
and	password,	you	might	use	code	such	as	this:

If	the	size	of	the	value	is	larger	than	the	disk	quota	remaining	for	the	storage	area,	an
“Out	of	memory”	exception	is	thrown.	Otherwise,	when	another	page	loads	or	when	the
user	returns	to	the	website,	these	details	can	be	retrieved	to	save	the	user	entering	them
again,	like	this:

If	the	key	doesn’t	exist,	then	the	getItem()	function	returns	a	value	of	null.

You	don’t	have	to	use	these	function	names	if	you	don’t	want	to,	because	you	can
access	the	localStorage	object	directly	as	the	two	following	statements	are	equivalent	to
each	other:

And	the	two	following	statements	are	therefore	also	equivalent	to	each	other:

Figure	17-1	shows	an	alert()	message	window	displaying	these	values	being
retrieved	from	local	storage,	using	the	following	code:

FIGURE	17-1	Data	has	been	saved	to	and	retrieved	from	local	storage.

The	first	part	of	code	within	the	if()	statement	writes	an	error	message	to	the	web
page	if	local	storage	is	not	supported	in	the	browser.	This	is	determined	by	examining	the
localStorage	object	and,	if	it	is	undefined,	then	local	storage	is	unavailable.

In	the	else	part	of	the	code,	a	message	is	first	written	to	the	web	page	indicating	that
local	storage	is	supported.	Then	the	username	and	password	are	saved	to	local	storage
with	the	setItem()	function.	Next,	these	values	are	retrieved	from	local	storage	into	the
variables	username	and	password.	Finally,	an	alert()	message	window	is	popped	up,
which	displays	the	retrieved	values.

Until	they	are	erased,	these	values	will	remain	in	the	local	storage	once	saved,	and	you	can	verify	this	by
trying	the	preceding	code	for	yourself,	running	it	once,	commenting	out	the	two	lines	of	code	that	call	setItem(),
and	then	running	it	again—the	alert	window	will	still	report	the	same	values.

Removing	and	Clearing	Local	Data
To	remove	an	item	of	data	from	the	local	storage,	all	you	need	to	do	is	issue	a	command
such	as	this:
username	=	localStorage.removeItem(’username’)

This	serves	to	retrieve	the	item	of	data	and	place	it	into	a	variable	(in	this	case
username),	and	then	deletes	the	data	from	local	storage.	If	you	don’t	need	to	first	read	the
data	you	are	removing,	you	can	simply	call	the	function	on	its	own,	like	this:
localStorage.removeItem(’username’)

You	can	also	completely	clear	the	local	storage	for	the	current	domain	by	issuing	this
command:
localStorage.clear()

Try	any	of	these	methods	on	the	preceding	example	and	run	it	again,	and	you’ll	find	that	the	values	have	been
erased.

Saving	and	retrieving	data	is	starting	to	take	us	into	the	realms	of	much	more
complicated	JavaScript	programming,	somewhat	beyond	the	scope	of	this	book.	So	the
information	in	this	lesson	is	mostly	of	use	to	programmers	working	with	large	amounts	of
JavaScript	program	code.

If	you	are	a	beginner	to	JavaScript,	then	it’s	best	to	simply	be	aware	of	the
possibilities	of	local	storage,	and	come	back	here	to	refresh	your	memory	about	how	it
works	when	your	programming	is	sufficiently	advanced	and	you	find	the	need	for	it.

Cross-Document	Messaging
Cross-document	messaging	(also	known	as	web	messaging)	allows	scripts	in	different
documents	to	interact	with	each	other	through	use	of	the	postMessage()	function.	The
code	to	send	messages	is	just	a	single	instruction,	in	which	you	pass	the	message	to	be
sent	and	the	domain	to	which	it	applies,	as	follows:

In	this	example	an	<iframe>	element	with	the	ID	of	frame	is	created,	that	loads	in	the
web	document	listen.htm	(see	the	following	code	listing).	Then,	within	the	<script>
section,	the	variable	count	is	initialized	to	1	and	a	repeating	interval	is	set	up	to	occur
every	second	to	post	the	string	’Message	’	(using	the	postMessage()	function)	along
with	the	current	value	of	count,	which	is	then	incremented,	and	the	message	is	posted	only
to	listeners	in	the	domain	http://localhost.

The	file	listen.htm	looks	like	this:

This	example	creates	a	<div>	element	with	the	ID	output,	in	which	the	contents	of
received	messages	will	be	placed.	In	the	<script>	section	there’s	a	single	anonymous
function	attached	to	the	onmessage	event	of	the	window.	In	this	function	the	event	.data
property	(the	contents	of	the	message)	is	then	displayed,	as	shown	in	Figure	17-2.

FIGURE	17-2	The	iframe	is	displaying	messages	from	the	parent	frame.

For	security	reasons	web	messaging	works	only	with	domains,	and	so	you	cannot	test
it	by	loading	files	in	from	a	file	system—a	web	server	must	be	used.	The	origin	used	in
this	example	is	http://localhost,	because	these	examples	are	running	on	a	local

http://localhost

development	server.

As	it	stands,	the	listen.htm	document	displays	any	and	all	messages	it	receives,	which
is	also	not	very	secure	because	malicious	documents	also	present	in	the	browser	can
attempt	to	send	messages	that	unwary	listener	code	might	access.	Therefore	you	can
restrict	the	messages	your	listener	reacts	to	using	an	if()	statement	to	test	the	origin
property,	like	this:

Summary
That	concludes	this	part	of	the	course	on	some	of	the	more	advanced	aspects	of	HTML5
that	you	can	use	right	now.	In	the	next	two	lessons	I’ll	show	you	how	to	add	HTML5
audio	and	video	to	your	web	pages,	without	having	to	resort	to	using	plug-ins	such	as
Microsoft	Silverlight	or	Adobe	Flash.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			Why	is	local	storage	a	better	solution	than	cookies?

2.			How	can	you	determine	whether	local	storage	is	available	in	a	browser?

3.			How	do	you	store	an	item	of	local	storage	data?

4.			How	do	you	retrieve	an	item	of	local	storage	data?

5.			How	can	you	remove	an	item	from	local	storage?

6.			How	do	you	clear	all	the	data	relating	to	your	domain	in	local	storage?

7.			How	can	you	post	a	message	to	another	document	loaded	into	the	browser?

8.			How	can	you	listen	for	messages	from	other	loaded	documents?

9.			What	should	you	do	to	ensure	that	you	post	messages	only	to	the	documents
you	want	to	receive	them?

10.			What	should	you	do	to	ignore	any	message	received	from	documents	from
which	you	do	not	wish	to	receive	them?

I

Playing	Audio

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

n	this	section	of	the	course,	I	introduce	two	of	the	most	popular	additions	to	HTML5,
the	<audio>	and	<video>	tags.	In	fact,	they	are	probably	going	to	be	even	more	used

than	the	<canvas>	tag	due	to	the	ability	to	play	media	directly	within	the	browser,	without
the	need	for	an	external	plug-in	such	as	the	Flash	Player.

So	in	this	lesson	I’ll	show	you	how	easy	it	is	to	add	HTML5	audio	to	your	pages,
which	I	think	you’ll	find	is	a	remarkably	easy	thing	to	do,	as	long	as	the	browser	is	a
recent	one.

As	you	work	through	this	lesson,	please	remember	that	the	technology	is	still	young
and	the	file	formats	supported	are	constantly	evolving	(and	vary	by	browser	for	patent
reasons),	but	the	following	explains	all	you	need	to	know	to	embed	audio	using	HTML5.

Flash	is	a	programming	environment	best	suited	for	creating	animations	and	games,	which	has	mostly	been
adopted	for	playing	video.	But	it	is	likely	that	HTML	will	supersede	it,	partly	due	to	Apple	not	including	it	by
default	on	new	Macs	and	banning	it	from	iOS	devices,	and	also	because	the	<canvas>	tag	provides	almost
everything	a	programmer	previously	would	have	needed	Flash	for.

Understanding	Codecs
The	term	codec	stands	for	enCOder/DECoder	and	describes	the	functionality	provided	by
software	that	encodes	and	decodes	media	such	as	audio	and	video.	In	HTML5	there	are
currently	a	number	of	different	sets	of	codecs	available,	depending	on	the	browser	used.

Here	are	the	codecs	currently	in	use	by	the	HTML5	<audio>	tag	(and	also	when	audio
is	attached	to	HTML5	video):

•			AAC	This	audio	codec,	which	stands	for	Advanced	Audio	Coding,	is	the	one	used
by	Apple’s	iTunes	store.	It	was	originally	proprietary,	patented	technology,	but	has
since	been	standardized	as	part	of	the	MPEG-2	and	MPEG-4	specifications,	and	is
supported	by	Apple,	Google,	and	Microsoft.

•			MP3	This	audio	codec,	which	stands	for	MPEG	Audio	Layer	3,	has	been
available	for	many	years	and	the	term	is	often	(incorrectly)	used	to	refer	to	any	type	of
digital	audio.	It’s	an	open	proprietary	format	(but	subject	to	patents	in	some	countries)
that	is	supported	by	Apple,	Google,	and	Microsoft.

•			PCM	This	audio	codec,	which	stands	for	Pulse	Coded	Modulation,	stores	the	full

http://www.mhprofessional.com/nixonhtml5

data	as	encoded	by	an	analog	to	digital	converter,	and	is	the	format	used	for	storing
data	on	audio	CDs.	Due	to	not	using	compression,	it	is	called	a	lossless	codec,	and	its
files	are	generally	many	times	larger	than	AAC	or	MP3	files.	It	is	supported	by	Apple,
Mozilla,	and	Opera.

•			Vorbis	Sometimes	referred	to	as	Ogg	Vorbis,	because	it	generally	uses	the	.ogg
file	extension,	this	audio	codec	is	unencumbered	by	patents	and	free	of	royalty
payments.	It	is	supported	by	Google	Chrome,	Mozilla	Firefox,	and	Opera.

The	following	list	details	the	major	operating	systems	and	browsers,	along	with	the
audio	types	they	support	by	default:

•			Apple	iOS	AAC,	MP3,	PCM

•			Apple	Safari	AAC,	MP3,	PCM

•			Google	Android	2.3+	AAC,	MP3,	Vorbis

•			Google	Chrome	AAC,	MP3,	Vorbis

•			Internet	Explorer	AAC,	MP3

•			Mozilla	Firefox	MP3,	PCM,	Vorbis

•			Opera	PCM,	Vorbis

If	you	study	this	list,	you’ll	see	that	none	of	these	codecs	are	shared	by	all	browsers
and	platforms,	which	is	rather	inconvenient.	The	problem	occurs	particularly	because
some	browsers	choose	to	not	employ	the	licensable	codecs.

Apple	Safari	for	Windows	requires	the	Apple	QuickTime	media	player	to	be	installed	in	order	for	HTML5
audio	and	video	to	play,	so	you	may	wish	to	use	JavaScript	browser	detection	software	to	alert	your	Windows
Safari	users	of	this,	particularly	since	the	only	error	they	may	otherwise	get	is	any	message	you	include	inside	the
<audio>	tags.

The	<audio>	and	<source>	Tags
However,	there’s	a	simple	(if	inconvenient)	solution,	which	is	to	record	your	content	using
multiple	codecs	and	then	list	them	all	within	<audio>	and	</audio>	tags,	as	in	the
following	example.	The	result	of	running	this	code	in	all	the	main	browsers	can	be	seen	in
Figure	18-1:

FIGURE	18-1	How	the	five	main	browsers	display	HTML5	audio

In	the	preceding	example,	three	types	of	audio	are	made	available,	but	nowadays	you
generally	only	need	to	encode	in	two	formats:	OGG,	and	either	AAC	or	MP3	to	ensure
you	cover	all	the	bases.

Perform	an	Internet	search	to	find	suitable	programs	to	create	the	file	types	you	need—there	are	plenty	of
them,	both	paid	and	free.

The	<audio>	and	<source>	Tag	Attributes
In	the	preceding	example	you	may	have	noticed	that	I	applied	an	attribute	with	the	name
controls	to	the	<audio>	tag.	This	had	the	effect	of	causing	a	set	of	controls	to	appear,	as
displayed	in	Figure	18-1.	If	that	attribute	is	omitted,	then	the	controls	will	not	display	(and
you’d	either	have	to	use	another	attribute	called	autostart	or	some	JavaScript	to	make
the	audio	play).

Here’s	a	list	of	audio	attributes	supported	by	HTML5:

•			autoplay	Causes	the	audio	to	commence	playing	as	soon	as	it	is	ready.

•			controls	Causes	the	Control	Panel	to	be	displayed.

•			loop	Sets	the	audio	to	play	over	and	over.

•			preload	Hints	at	how	much	buffering	(or	preloading)	to	use	to	provide	the	best
user	experience.

•			src	Specifies	the	source	location	of	an	audio	file.

•			type	Specifies	the	codec	used	in	creating	the	audio.

By	selecting	the	attributes	you	require	and	encoding	audio	in	the	right	formats,	you
can	ensure	that	it	will	play	on	all	HTML5-compatible	browsers,	and	you’ll	never	have	to
worry	about	loading	in	a	Flash	or	other	audio	player	again,	unless	you	intend	to	also
support	older	browsers,	as	described	in	the	following	section.

Supporting	Older	Browsers
Older	browsers	that	do	not	recognize	the	<audio>	tag	can	still	play	audio	as	long	as	they
allow	the	embedding	of	an	object	that	can	play	audio,	such	as	a	Flash	program	file.
Assuming	you	have	access	to	a	Flash	player	called	audio.swf	(there	is	one	in	the
examples.zip	file	for	this	course),	you	can	use	code	such	as	the	following	to	do	this:

On	a	non-HTML5	audio-enabled	browser,	the	code	within	the	<object>	and
</object>	tags	will	load	in	the	Flash	program	file	audio.swf,	and	pass	it	the	MP3	file
audio.mp3,	which	can	then	be	played	by	selecting	the	Play	button.	Figure	18-2	shows
what	the	player	looks	like—not	bad	compared	to	the	HTML5	ones,	so	it’s	a	pretty	good
fallback.

FIGURE	18-2	The	fallback	Flash	audio	player

Summary

You	now	have	all	the	tools	you	need	in	order	to	play	audio	in	your	web	pages,	whether	or
not	the	browser	supports	HTML5	(but	as	long	as	it	at	least	supports	Flash).	In	the	next
lesson	I’ll	show	you	how	to	do	the	same	with	video.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			Which	HTML5	tag	embeds	audio	in	a	document?

2.			Name	the	four	types	of	audio	format	supported	by	HTML5	browsers.

3.			Which	two	audio	formats	used	together	will	ensure	that	your	audio	will	play
on	all	major	browsers	and	platforms?

4.			What	is	the	purpose	of	the	<source>	tag?

5.			Which	two	attributes	does	the	<source>	tag	require?

6.			Which	attribute	makes	audio	play	on	page	load?

7.			How	can	you	control	whether	or	not	the	audio	controls	are	displayed?

8.			How	can	you	set	a	piece	of	audio	to	play	over	and	over?

9.			How	can	you	cause	audio	to	begin	loading	even	before	the	user	selects	Play?

10.			How	can	you	support	older	browsers	that	do	not	recognize	HTML5	audio?

A

Displaying	Video

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

dding	HTML5	video	to	your	pages	is	almost	as	easy	as	adding	audio,	but	there	are
some	differences,	and	I’ll	point	out	the	things	you	need	to	concern	yourself	with.

The	main	thing	to	realize,	though,	is	that	HTML5	video	is	still	in	its	infancy	and	that
specifications	and	codecs	may	change	over	time,	as	may	the	best	ways	to	code	and	display
your	video.	Still,	following	the	advice	in	this	lesson,	you’ll	be	able	to	add	video	to	any
HTML5-enabled	browser	that	supports	the	<video>	tag,	and	also	some	other	or	earlier
browsers	that	do	not	(as	long	as	they	support	the	Flash	plug-in).

The	Video	Codecs
As	explained	in	the	previous	lesson,	the	term	codec	stands	for	enCOder/DECoder	and
describes	the	functionality	provided	by	software	that	encodes	and	decodes	media	such	as
audio	and	video.

For	video,	though,	codecs	are	placed	within	containers,	which	may	be	any	of	the
following:

•			MP4	A	license-encumbered	multimedia	container	format	standard	specified	as	a
part	of	MPEG-4,	supported	by	Apple,	Microsoft	and,	to	a	lesser	extent	Google,	since
it	has	its	own	WebM	container	format.

•			OGG	A	free,	open	container	format	maintained	by	the	Xiph.Org	Foundation.	The
creators	of	the	OGG	format	state	that	it	is	unrestricted	by	software	patents	and	is
designed	to	provide	for	efficient	streaming	and	manipulation	of	high-quality	digital
multimedia.

•			WebM	An	audio-video	format	designed	to	provide	a	royalty-free,	open	video
compression	format	for	use	with	HTML5	video.	The	project’s	development	is
sponsored	by	Google.

In	the	HTML5	<video>	tag	there	are	currently	a	number	of	different	sets	of	codecs
available,	depending	on	the	browser	used:

•			H.264	A	patented	proprietary	video	codec	for	which	playback	is	free	for	the	end
user,	but	which	may	incur	royalty	fees	for	all	parts	of	the	encoding	and	transmission
process.

•			Theora	This	is	a	video	codec	unencumbered	by	patents,	and	which	is	free	of
royalty	payments	at	all	levels	of	encoding,	transmission,	and	playback.	This	codec	is
supported	by	Google	Chrome,	Mozilla	Firefox,	and	Opera.

http://www.mhprofessional.com/nixonhtml5

•			VP8	This	video	codec	is	similar	to	Theora	but	is	owned	by	Google,	which	has
published	it	as	open	source,	making	it	royalty-free.	It	is	supported	by	Google	Chrome,
Mozilla	Firefox,	and	Opera.	There	is	also	a	newer	VP9	codec.

The	following	list	details	the	major	operating	systems	and	browsers,	along	with	the
video	containers	and	video	types	they	support	by	default:

•			Apple	iOS	MP4	/	H.264

•			Apple	Safari	MP4	/	H.264

•			Google	Android	2.3+	MP4,	OGG,	WebM	/	H.264,	Theora,	VP8

•			Google	Chrome	MP4,	OGG,	WebM	/	H.264,	Theora,	VP8/VP9

•			Internet	Explorer	MP4	/	H.264

•			Mozilla	Firefox	MP4,	OGG,	WebM	/	H.276,	Theora,	VP8/VP9

•			Opera	OGG,	WebM	/	Theora,	VP8

As	with	HTML5	<audio>,	there	is	no	single	container	and/or	codec	for	the	<video>
tag	common	to	all	browsers	and	platforms.	However,	the	dominant	format	is	MP4	/	H.264,
so	if	you	encode	in	that	and	then	OGG	/	VP8	too,	you’ll	cover	all	the	major	browsers.

The	<video>	and	<source>	Tags
In	the	following	example	three	different	video	formats	are	offered	to	the	browser,
as	shown	in	Figure	19-1:

FIGURE	19-1	Playing	an	HTML5	video

If	you	don’t	have	access	to	any,	you	can	search	the	Internet	for	a	range	of	free	and	paid	video	conversion	and
compression	tools.

The	<video>	and	<source>	Tag	Attributes
In	the	preceding	example	I	applied	the	attribute	with	the	name	controls	to	the	<video>
tag.	This	had	the	effect	of	causing	a	set	of	controls	to	appear,	as	displayed	in	Figure	19-1.
If	that	attribute	is	omitted,	then	the	controls	will	not	display	(and	you’d	either	have	to	use
the	autostart	attribute,	or	use	some	JavaScript	to	make	the	video	play).

Here’s	a	list	of	video	attributes	supported	by	HTML5:

•			autoplay	Causes	the	video	to	commence	playing	as	soon	as	it	is	ready.

•			controls	Causes	the	Control	Panel	to	be	displayed.

•			height	Specifies	the	height	at	which	to	display	the	video.

•			loop	Sets	the	video	to	play	over	and	over.

•			poster	Lets	you	choose	an	image	to	display	prior	to	playback.

•			preload	Hints	at	how	much	buffering	(or	preloading)	to	use	to	provide	the	best
user	experience.

•			src	Specifies	the	source	location	of	a	video	file.

•			type	Specifies	the	codec	used	in	creating	the	video.

•			width	Specifies	the	width	at	which	to	display	the	video.

By	selecting	the	attributes	you	require	and	encoding	video	in	the	right	formats,	you
can	ensure	that	it	will	play	on	all	HTML5-compatible	browsers,	and	you’ll	never	have	to
worry	about	loading	in	a	Flash	or	other	video	player	again,	unless	you	intend	to	also
support	older	browsers,	as	follows:

Using	the	code	in	the	<object>	and	</object>	tags,	you	can	ensure	that	non-
HTML5-enabled	browsers	can	still	play	your	MP4	videos	as	long	as	they	have	the	Flash
plug-in	loaded.	The	flowplayer.swf	files	required	to	do	this	are	included	in	the
examples.zip	file	on	the	accompanying	website,	but	you	can	check	for	newer	versions	at
the	flowplayer.org	website.	If	you	download	a	newer	version,	ensure	you	match	the	code
to	the	filenames,	which	will	have	numeric	extensions	such	as	-3.2.7,	and	so	on.

The	preceding	code	displays	like	Figure	19-2	in	browsers	that	do	not	support	the
<video>	tag,	but	do	have	Flash	installed.

FIGURE	19-2	Displaying	the	same	video	using	a	Flash	player

The	flowplayer.swf	file	restricts	the	playing	of	files	directly	from	a	local	folder	on	a	computer,	therefore	you
must	supply	it	with	the	full	Internet	URL	of	a	file,	as	in	the	example.

Summary
Now	that	you’ve	completed	this	lesson,	you	will	have	all	the	audio	and	video	tools	you
need	in	order	to	play	media	in	your	web	pages,	whether	or	not	the	browser	supports
HTML5	(but	as	long	as	it	at	least	supports	Flash).	You	have	now	learned	almost
everything	that	is	currently	usable	in	HTML5.	In	the	next	lesson	I’ll	explain	the	features
that	are	included	in	HTML5	but	which	have	so	far	been	poorly	implemented	(if	at	all),	but
which	you	should	know	about	because	they	will	probably	be	adopted	by	the	major
browsers	over	the	coming	months	and	years.

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			Which	HTML5	tag	embeds	video	in	a	document?

2.			Name	the	three	types	of	video	format	supported	by	HTML5	browsers.

3.			Which	two	video	formats	used	together	will	ensure	that	your	video	will	play

on	all	major	browsers	and	platforms?

4.			What	is	the	purpose	of	the	<source>	tag?

5.			Which	two	attributes	does	the	<source>	tag	require?

6.			Which	attribute	makes	video	play	on	page	load?

7.			How	can	you	control	whether	or	not	the	video	controls	are	displayed?

8.			How	can	you	set	a	video’s	width	and	height?

9.			How	can	you	display	an	image	of	your	choice	as	a	placeholder	for	where	the
video	will	play?

10.			How	can	you	support	older	browsers	that	do	not	recognize	HTML5	video?

H

Working	with	Microdata,	Web	Workers,
and	Web	Applications

To	view	the	accompanying	video	for	this	lesson,	please	visit	mhprofessional.com/nixonhtml5/.

TML5	is	an	extension	of	HTML	that	is	proceeding	gradually.	Many	of	its	tags	and
features	have	already	been	implemented	by	the	major	browsers,	while,	as	you’ve

seen,	others	are	only	partially	developed	on	some	browsers.

So	I	have	reserved	the	final	lesson	in	this	course	for	discussion	of	the	remaining
advanced	HTML5	features,	some	of	which	have	yet	to	be	fully	(or	even	properly)
implemented,	but	are	going	to	turn	out	extremely	powerful	when	they	become	available,
and	some	of	which	it	may	benefit	you	to	start	using	already.

I	show	you	how	they	work	(or	are	planned	to	work),	although	aspects	of	some	parts	of
the	implementation	could	develop	or	be	improved	over	time,	as	HTML5	is	really	more	of
a	bundling	of	a	group	of	unrelated	features	that	developers	want	to	add	to	HTML.

Microdata
The	first	of	these	features	is	called	microdata,	which	is	a	subset	of	HTML	designed	for
making	a	document	have	meaning	to	machines	by	providing	metadata,	just	as	it	has
meaning	to	a	reader	of	the	document.

What	it	does	is	make	available	the	following	new	tag	attributes:	itemscope,
itemtype,	itemid,	itemref,	and	itemprop.	Using	them	you	will	be	able	to	clearly
define	the	properties	of	an	item	such	as	a	book,	providing	a	range	of	information	that	a
computer	can	use	to	understand,	for	example,	its	authors,	publishers,	contents,	and	so	on.

Here’s	how	HTML	code	looks	that	incorporates	microdata,	and	Figure	20-1	shows
how	this	HTML	displays:

http://www.mhprofessional.com/nixonhtml5

FIGURE	20-1	Packed	with	microdata,	the	HTML	displays	quite	normally.

As	you	might	expect,	the	adding	of	microdata	has	done	nothing	to	alter	the	format	of
the	HTML	in	any	way.	But	it	has	provided	a	wealth	of	information	to	any	browsers	or
search	engines	that	can	read	the	microdata	and	understand	what	it	represents.

If	you	study	the	example	code,	you’ll	see	a	couple	of	references	to	URLs	at	the	data-
vocabulary.org	web	server.	That’s	because	this	is	where	all	the	information	you	need	for
using	microdata	can	be	found,	and	from	which	you	can	choose	the	microdata	types	to	use
in	your	HTML.	I	strongly	recommend	you	check	it	out,	especially	since	that	website	is
now	saying	that	schema.org	is	likely	to	supersede	it.

The	in-browser	DOM	(Document	Object	Model)	functions	for	managing	microdata
appear	not	to	have	been	implemented	yet	by	many	major	browser	publishers.

When	the	API	is	incorporated	into	the	major	browsers,	the	microdata	scripts	will	be
able	to	use	the	microdata	to	expose	information	to	the	user,	for	example	offering	it	in	a
form	that	can	be	used	by	other	applications.	Very	likely	there	will	also	be	mouseover	and
other	information	revealed	when	mousing	over	text	that	has	microdata	attached.	So	from
that	point	of	view	there’s	not	a	lot	of	reason	to	use	microdata;	not	yet,	anyway.

Because	the	API	will	use	the	function	getItems(),	you	can	test	whether	a	browser
supports	it	or	not	using	the	following	code,	which	pops	up	a	message	telling	you:

The	specs	for	microdata	are	available	at	tinyurl.com/microdataspecs,	so	take	a	look	if
you	want	to	know	what	to	expect,	and	how	to	use	the	getItems()	function	when	browsers

start	to	support	it.

The	first	big	users	of	microdata	will	actually	be	the	search	engines,	and	it	has	been	reported	that	some
microdata	information	is	already	turning	up	in	Google’s	index.	Therefore	you	do	have	a	very	good	reason	to	start
using	microdata	immediately,	because	anything	you	can	do	to	legitimately	improve	your	website	rankings	in	the
search	engines	is	important	to	implement.

Web	Workers
Normally,	to	achieve	background	processing	in	JavaScript,	you	need	to	set	up	a	timer	that
is	called	repeatedly,	supplying	slices	of	processor	time	to	one	or	more	functions,	and	these
functions	must	then	quickly	do	a	small	piece	of	work	and	return,	in	order	to	not	slow
down	the	browser	and	make	it	seem	sluggish.

Web	workers,	however,	provide	a	standard	way	for	browsers	to	run	multiple
JavaScript	threads	in	the	background	that	can	pass	messages	to	each	other,	in	much	the
same	manner	as	the	threads	running	in	an	operating	system.	You	simply	call	up	a	new
worker	script,	which	will	sit	there	in	the	background	waiting	for	messages	to	be	sent	to	it,
which	it	will	then	act	upon.

The	aim	of	this	is	to	achieve	a	speed	increase	of	two	to	three	times	over	regular
background	JavaScripts,	although	getting	to	grips	with	programming	them	is	likely	to
require	a	longer	rather	than	shorter	learning	curve.

Here’s	how	to	find	out	if	a	browser	supports	web	workers:

This	script	simply	alerts	you	as	to	whether	or	not	web	workers	are	supported	by	the
browser	you	are	using.	Once	you	have	determined	that	the	browser	will	use	them,	then
you	can	run	code	such	as	the	following,	which	calculates	prime	numbers	in	the
background:

This	script	displays	some	text	and	creates	an	element	with	the	id	of	result	into	which
the	highest	prime	number	found	so	far	is	continuously	written.	This	is	achieved	by
creating	the	new	object	called	worker	by	calling	the	Worker()	function,	passing	it	the
name	of	an	external	JavaScript	file	called	worker.js	(explained	shortly).

The	onmessage	event	of	the	worker	object	is	then	attached	to	by	an	anonymous
function.	This	triggers	only	when	there	is	a	new	message	to	display,	and	the	code	that	is
called	copies	the	data	in	event.data	into	the	innerHTML	property	of	the	result	element.
After	the	code	exits,	it	will	not	be	called	again	until	another	message	is	ready	to	display.

The	code	that	does	the	prime	number	calculation	is	saved	separately	in	the	worker.js,
and	looks	like	this:

This	is	a	simple	iterative	piece	of	code	that	increases	the	value	of	n,	starting	from	1.
After	each	increase,	all	values	of	2	up	to	the	square	root	of	n	are	tested	to	see	if	they	are	a
factor	of	n.	If	any	of	them	is,	then	n	cannot	be	prime	and	so	the	continue	keyword	forces
execution	to	go	back	to	the	start	of	the	search:	loop	to	see	if	n+1	is	prime,	and	so	on.

But	if	n	is	found	to	have	no	factors,	then	it	is	prime	and	the	continue	keyword	is	not
encountered,	so	program	flow	drops	through	to	the	postMessage()	call,	which	posts	the
value	n,	creating	an	onmessage	event	on	the	worker	object	in	the	preceding	code.	The
result	of	running	this	code	is	a	line	of	text	at	the	top	of	the	browser	that	continuously
updates	and	looks	like	this:
The	highest	prime	number	discovered	so	far	is:	42737

Working	together,	an	HTML	page	and	associated	JavaScript	file	can	work	away	in	the
background	performing	all	manner	of	tasks,	something	which	was	achievable	in	the	past
only	by	manually	creating	events	to	run	the	code	a	few	instructions	at	a	time	before
returning	to	allow	the	web	page	to	have	some	processor	cycles,	after	which	the	event	is
then	created	to	let	the	program	code	run	a	few	more	cycles,	and	so	on.

As	you	might	imagine,	the	old	way	is	rather	tricky	and	can	be	cumbersome.	It	can	also
mess	with	smooth	animations	on	your	web	page	if	you	don’t	get	the	event	timings	and
time	sharing	exactly	right.	But	with	web	workers,	you	can	forget	all	about	these	things	and
simply	place	your	background	code	into	its	own	file,	and	just	ensure	that	the	code	calls	the
postMessage()	function	whenever	it	has	something	to	say.

For	full	details	on	the	web	worker	specifications,	you	can	check	out	the	official

website	at	tinyurl.com/webworkerspecs.

Offline	Web	Applications
The	idea	of	offline	web	applications	is	that	once	you	visit	a	website,	the	website	tells	your
browser	about	all	the	files	it	uses	so	that	the	browser	can	download	them	all	and	you	can
then	run	the	web	application	locally,	even	without	an	Internet	connection.

Offline	web	applications	require	a	web	server	to	set	up	with	the	correct	MIME	types
(originally	known	as	Multipurpose	Internet	Mail	Extensions,	but	the	word	Mail	has	since
been	replaced	with	Media),	in	order	for	a	browser	that	understands	offline	web
applications	to	make	use	of	the	feature	and	fetch	the	files	it	needs.

If	you	are	using	a	web	server	that	is	not	Apache,	consult	your	manuals	for	how	to	add
the	text/cache-manifest	MIME	type	in	order	for	your	server	to	send	the	manifest	file
using	the	correct	type.	Otherwise,	there’s	a	neat	shortcut	you	can	use,	which	is	to	create	a
file	called	.htaccess	in	the	same	folder	as	the	files	to	be	made	available	offline,	with	the
following	contents:
AddType	text/cache-manifest	.appcache

On	Windows	(at	least	in	Windows	Explorer),	you	cannot	create	a	filename	that	starts	with	a	period,	so,	if
needed,	call	the	file	something	like	a.htaccess	and	then	rename	it	to	.htaccess	after	uploading	it.	On	some	FTP
programs	the	file	will	then	seem	to	disappear	because	it	becomes	a	system	file.

Here’s	how	offline	apps	work.	You	start	with	a	manifest	file	that	contains	all	the	files
you’d	like	to	offer	for	offline	use,	like	the	following,	which	is	saved	with	the	filename
clock.appcache:

The	three	files	detailed	in	the	manifest	are	then	as	follows,	starting	with	clock.htm:

Here’s	clock.css:

Thanks	to	the	manifest,	all	these	files	will	be	downloaded	and	made	available	for	use
offline	to	use	in	any	environment.	Between	them,	they	create	a	simple	clock	that	looks	like
Figure	20-2.

FIGURE	20-2	The	clock	web	app	running	in	Google	Chrome

The	code	that	does	the	work	is	in	the	clock.js	file.	It	sets	up	a	regular	interval	with
setInterval()	such	that	the	code	within	it	is	called	every	1,000	milliseconds	(or	once	a
second).	This	code	simply	copies	the	date	into	the	innerHTML	property	of	the	output
element.

For	full	details	on	the	specifications	for	offline	web	applications,	you	can	check	out
the	official	website	at	tinyurl.com/offlinewebapps.

Drag	and	Drop
You	can	support	dragging	and	dropping	of	objects	on	a	web	page	by	setting	up	event
handlers	for	the	ondragstart,	ondragover,	and	ondrop	events,	as	follows:

In	the	<body>	of	this	example,	a	<div>	element	is	created,	and	its	ondrop	and
ondragover	events	have	the	event	handler	functions	drop	and	allow	attached	to	them.
After	this	there’s	some	text,	and	then	an	image	is	displayed,	which	has	its	draggable

property	set	to	true,	and	the	function	drag	is	attached	to	its	ondragstart	event.

In	the	<script>	section,	the	allow	event	handler	function	simply	prevents	the	default
action	of	dragging	(which	is	to	disallow	it)	from	occurring,	while	the	drag	event	handler
function	calls	the	setData	method	of	the	dataTransfer	object	of	the	event,	passing	it	the
MIME	type	image/png	and	the	target.id	of	the	event	(which	is	the	object	being
dragged).	The	dataTransfer	object	holds	the	data	that	is	being	dragged	during	a	drag-
and-drop	operation.

Finally,	the	drop	event	handler	function	also	intercepts	its	default	action	so	that
dropping	is	allowed,	then	it	fetches	the	contents	of	the	object	being	dragged	from	the
dataTransfer	object,	passing	it	the	mime	type	of	the	object.	Then	the	dropped	data	is
appended	to	the	target	using	its	appendChild	method.

When	you	load	this	example	into	a	browser,	you	can	drag	and	drop	the	image	into	the
<div>	element,	as	shown	in	Figure	20-3.

FIGURE	20-3	An	image	has	been	dragged	and	dropped.

Other	HTML5	Tags
There	are	a	number	of	other	new	HTML5	tags	that	have	not	yet	been	implemented	in	any
browser	(or	have	poor	or	limited	support),	and	which	I	therefore	won’t	detail	(particularly
since	their	specs	could	change).

But,	for	the	sake	of	completeness,	these	tags	are:	<article>,	<aside>,	<details>,
<figcaption>,	<figure>,	<footer>,	<header>,	<hgroup>,	<keygen>,	<mark>,

<menuitem>,	<meter>,	<nav>,	<output>,	<progress>,	<rp>,	<rt>,	<ruby>,

<section>,	<summary>,	<time>,	and	<wbr>.	You	can	get	more	information	on	these	and
all	other	HTML5	tags	at	the	following	URL:	http://whatwg.org/html.

Summary

http://whatwg.org/html

Congratulations!	You’ve	just	completed	this	course	on	HTML5.	Thanks	for	taking	it!	I
hope	you’ve	enjoyed	the	process	and	have	learned	plenty	of	useful	things	from	this	course
but,	before	you	go,	you	may	be	interested	in	visiting	my	website	at	robinnixon.com	to	see
my	other	books	and	courses,	which	cover	both	web	technology	and	motivational	and
personal	improvement	topics.

If	you	feel	so	motivated,	I	would	be	very	grateful	for	any	review	of	this	book	you
choose	to	leave	at	your	preferred	online	website.	And	thanks	once	again	for	taking	the
course!

Self-Test	Questions
Test	how	much	you	have	learned	in	this	lesson	with	these	questions.	If	you	don’t	know	an
answer,	go	back	and	reread	the	relevant	section	until	your	knowledge	is	complete.	You	can
find	the	answers	in	the	appendix.

1.			What	is	the	purpose	of	microdata?

2.			What	are	two	of	the	attributes	used	to	denote	microdata?

3.			What	do	web	workers	do?

4.			How	do	you	create	a	new	web	worker?

5.			How	can	you	receive	messages	from	a	web	worker?

6.			What	are	offline	web	applications?

7.			What	MIME	time	is	required	by	offline	web	applications	for	the	manifest
file?

8.			To	which	events	should	you	attach	in	order	to	implement	drag	and	drop	in
a	document?

9.			What	is	the	purpose	of	calling	the	preventDefault()	function?

10.			Which	two	functions	handle	the	passing	of	dragged-and-dropped	items?

T

Answers	to	the	Self-Test	Questions

his	appendix	contains	the	answers	to	all	the	questions	posed	at	the	end	of	the	lessons
in	this	book.	To	ensure	you	have	understood	everything,	try	to	refrain	from	checking

these	answers	until	you	have	attempted	to	answer	all	the	questions	in	a	lesson.

If	you	don’t	know	an	answer,	try	to	find	it	in	the	book	before	you	look	here	if	you	can,
as	this	will	help	you	to	remember	it	next	time.

Lesson	1	Answers
1.			The	acronym	HTML	stands	for	HyperText	Markup	Language.

2.			A	web	browser	is	used	by	someone	surfing	the	Internet	to	view	content	that	is
sent	by	web	servers.

3.			The	acronym	HTTP	stands	for	HyperText	Transfer	Protocol.	This	is	the
method	used	for	transferring	unencrypted	web	documents	from	a	server	to	a	browser
(HTTPS	is	used	for	transferring	encrypted	documents).

4.			A	web	proxy	fetches	data	from	a	web	server	on	behalf	of	a	web	browser.
Generally,	proxies	store	local	copies	of	web	data	in	a	cache,	and	then	serve	up	the
copies	to	a	web	browser	to	provide	faster	response.

5.			HTML	documents	often	have	the	file	extension	.html	or	simply	.htm.

6.			A	404	page	is	so	called	because	404	is	the	HTTP	error	code	returned	by	a	web
server	when	a	document	cannot	be	located,	so	“not-found”	pages	are	often	referred
to	as	404	pages.

7.			An	IP	address	is	a	set	of	numbers	allocated	to	each	unique	Internet-connected
device.	A	domain	is	an	alphanumeric	string	used	to	refer	to	an	IP	address	in	a	more
memorable	fashion.	For	example,	at	the	time	of	writing,	instead	of	remembering	and
entering	http://74.125.224.72,	you	can	simply	type	http://google.com	into	a	browser.

8.			A	query	string	is	a	set	of	alphanumeric	data	after	a	URL	that	starts	with	a	?
character.	This	data	may	contain	form	input	that	is	being	sent	to	a	web	server	via	a
Get	request.

9.			An	HTML	tag	is	the	name	of	an	element	enclosed	within	angle	brackets,	such
as	<i>,	which	represents	italic	text.	Many	tags	also	have	matching	closing	tags	such
as	</i>,	which	turns	italics	off	again.	Some	tags	such	as		do	not	have	a
matching	closing	tag	because	they	are	self-closing	(empty).

10.			A	tag	attribute	is	additional	data	supplied	to	a	tag,	such	as	the	URL	of	the
image	in	.	Here	src	is	the	attribute	name	and
myimage.jpg	is	its	value.

http://74.125.224.72

Lesson	2	Answers
1.			The	declaration	<!DOCTYPE	html>	should	be	at	the	start	of	all	HTML5

documents.

2.			The	<html>	and	</html>	tags	are	used	to	contain	HTML.	The	<html>	element
represents	the	root	of	an	HTML	document.

3.			The	<head>	tag	is	used	(along	with	</head>)	to	denote	a	document’s	head
section,	which	includes	items	such	as	its	title.

4.			To	title	a	document,	place	the	title	between	<title>	and	</title>	tags.

5.			The	<title>	tag	should	appear	within	<head>	and	</head>	tags.

6.			To	denote	the	body	of	an	HTML	document,	place	it	within	<body>	and
</body>	tags.

7.			CSS	rules	should	be	placed	within	<style>	and	</style>	tags	in	the	<head>
section.

8.			You	include	a	style	sheet	in	an	HTML	document	using	the	<link>	tag,	with
appropriate	attributes.

9.			To	embed	JavaScript	into	an	HTML	document,	place	it	between	<script>
and	</script>	tags.

10.			You	can	run	an	external	JavaScript	file	from	an	HTML	document	by	calling
it	up	from	a	<script>	tag	with	its	location	provided	as	the	value	for	its	src	attribute.
You	will	also	need	a	</script>	tag	following.

Lesson	3	Answers
1.			To	place	a	comment	in	an	HTML	document,	preface	it	with	the	characters	<!-

-	and	follow	it	with	-->.	Whatever	is	between	these	strings	will	not	display.

2.			A	<div>	element	occupies	a	rectangular	area	in	a	web	browser	which,	by
default,	extends	to	the	browser’s	right-hand	edge,	and	is	often	used	as	a	container
for	groups	of	objects	(such	as	creating	a	newspaper-style	column).	A	
element	flows	with	text	and	is	intended	mainly	for	adjusting	the	styling	of	text.

3.			The	six	pairs	of	tags	you	can	use	to	create	different	levels	of	headings	are
<h1>	and	</h1>	for	the	largest	size	of	heading,	through	<h6>	and	</h6>	for	the
smallest.

4.			To	denote	the	start	and	end	of	a	paragraph,	you	use	the	<p>	and	</p>	tags.

5.			To	issue	a	line	break	in	an	HTML	document,	use	the	
	tag.

6.			To	format	HTML	text	in	bold	without	using	CSS,	place	it	within		and	
tags.

7.			To	display	italic	text	in	HTML,	place	it	within	<i>	and	</i>	tags.

8.			To	display	text	in	italics	with	CSS,	you	can	place	a	rule	inline,	like	this:	<span

style=’font-style:italic;’>Italic	text,	or	you	can	create	a	class	in
the	<style>	section	of	a	document,	such	as	.italic	{	font-style:italic;	}.
You	can	then	apply	this	class	as	follows:	Italic
text.

9.			To	make	an	element	display	as	line-through	using	CSS,	you	can	use	an	inline
rule	such	as:	Line-
through,	or	you	can	create	a	class	in	the	<style>	section	of	a	document,
such	as	.line	{	text-decoration:line-through;	}.	You	can	then	apply	this
class	as	follows:	Line-through.

10.			The	term	deprecated	is	applied	to	parts	of	HTML	that	should	no	longer	be
used	and	may	become	obsolete	and	removed	from	HTML	at	a	later	date—the
developers	of	HTML	are	giving	you	warning	that	you	should	stop	using	such
deprecated	tags	now	while	they	still	work,	and	that	you	shouldn’t	wait	until	they
stop	working,	because	your	documents	may	then	break	if	you	don’t	update	them	in
time.

Lesson	4	Answers
1.			The		tag	supports	manipulating	fonts	with	HTML.

2.			The	color	attribute	of	the		tag	is	used	to	change	color.	For	example:
Green	text.

3.			To	change	the	face	of	a	font,	use	the	face	attribute.	For	example:	Arial	text.

4.			To	change	a	font’s	size	in	HTML,	use	the	size	attribute.	For	example:	Size	6.

5.			To	change	the	background	of	a	document’s	body	without	using	CSS,	you	can
apply	a	value	to	its	bgcolor	attribute,	in	the	following	manner:	<body
bgcolor=’black’>.

6.			The	hexadecimal	number	#FF0000	is	red,	#FFFFFF	is	white,	and	#888888	is
mid-grey.

7.			To	change	font	face	using	CSS,	you	can	apply	a	style,	either	with	a	class	or	an
ID,	or	inline	like	this:	Arial	font.

8.			To	display	images	in	HTML,	use	the		tag,	like	this:	.

9.			In	HTML	you	can	left-align	an	element	such	as	an	image	by	applying	a	value
to	its	align	attribute	such	as	left,	right,	or	center,	like	this:	.

10.			The	CSS	way	of	left-aligning	an	element	is	to	use	the	float	rule,	like	this:
,	or	by	applying	a	class,	or	an	ID
using	this	rule,	and	so	on.

Lesson	5	Answers
1.			You	begin	an	ordered	list	with	the		tag,	and	close	it	with	.

2.			You	denote	a	list	element	by	placing	it	within		and		tags.

3.			Unordered	lists	are	specified	in	HTML	with	the		and		tags.

4.			To	change	the	start	value	of	an	ordered	list,	you	apply	a	value	to	its	start
attribute.	For	example:	<ol	start=’20’>.

5.			To	change	the	bullet	type	of	an	unordered	list,	apply	the	value	disc,	circle,
or	square	to	its	type	attribute,	like	this:	<ul	type=’square’>.	To	change	the	case	of
an	alphabetic	ordered	list,	apply	either	A	or	a	to	its	type	attribute,	or	apply	either	I
or	i	to	change	a	roman	numeral	list,	like	this	<ol	type=’A’>,	or	this	<ol	type=’i’>.

6.			Definition	lists	use	the	<dl>	and	</dl>	tags,	in	conjunction	with	<dt>	and
</dt>,	and	<dd>	and	</dd>.

7.			HTML	tables	are	created	with	the	<table>	and	</table>	tags.

8.			Table	rows	are	created	with	<tr>	and	</tr>	tags,	table	data	cells	with	<td>
and	</td>	tags,	and	table	heading	cells	with	<th>	and	</th>	tags.

9.			To	add	a	caption	to	an	HTML	table,	place	the	caption	text	between	<caption>
and	</caption>	tags,	right	after	the	<table>	tag.

10.			The	two	attributes	that	allow	cells	to	spread	out	over	more	than	one	row	or
column	are	rowspan	and	colspan.	For	example:	<td	rowspan=’2’>.

Lesson	6	Answers
1.			To	preface	secure	Internet	URLs,	you	use	the	https://prefixinalink	(as	long	as

the	target	web	server	supports	secure	web	pages).

2.			You	can	access	a	subfolder	called	folder	from	the	root	of	mydomain.com
using	the	URL	http://mydomain.com/folder/.

3.			To	link	to	the	website	mydomain.com	in	HTML,	you	would	use	the	following
syntax:	Click	here.

4.			To	link	to	the	root	of	the	current	domain,	simply	use	the	relative	URL	/	in	a
link,	like	this:	Home.

5.			To	make	a	destination	URL	from	a	hyperlink	load	into	a	different	frame	or
window,	apply	a	value	to	the	target	attribute	of	the	link,	as	follows:	<a	href	=
’http://mydomain.com’	target	=	’otherframe’>Click	me.	To	always	open
a	link	in	a	new	window	(or	tab	if	the	user	has	this	setting),	assign	the	value	_blank
to	target.

6.			To	hyperlink	directly	to	a	section	within	a	web	document,	first	create	an
anchor	to	that	place	like	this:	,	and	then	you	can	link
to	the	HTML	immediately	following	this	anchor	as	follows:	Click	me.	If	you	are	not	linking	to	the	current	page,	also

http://https://prefixinalink
http://mydomain.com/folder/

include	the	other	page’s	URL,	like	this:	<a	href	=
’http://mydomain.com/news.htm#subsection’>Clickme.

7.			To	create	an	HTML	form,	use	the	<form>	and	</form>	tags.

8.			To	request	a	single	text	input	line	from	a	user,	you	can	use	an	<input>	tag
from	within	a	form,	like	this:	<input	type=’text’	name=’firstname’>.

9.			To	provide	more	than	a	single	line	of	space	to	input	text,	you	can	use	a
<textarea>	tag,	like	this:	<textarea	name=’bio’	cols=’40’	rows=’5’>
</textarea>.	This	creates	an	input	box	with	five	lines	of	40	characters	per	line.

10.			To	embed	another	document,	you	can	use	an	iframe,	like	this:	<iframe
src=’http://othersite.com/news.html’></iframe>.

Lesson	7	Answers
1.			In	conjunction	with	an		tag,	the	<map>	tag	is	used	to	create	an	image

map,	consisting	of	one	or	more	areas	within	the	map	defined	by	<area>	tags.

2.			To	denote	text	as	a	citation,	place	it	within	<cite>	and	</cite>	tags.

3.			To	change	the	direction	of	text	flow	from	left-to-right	to	right-to-left,	use	the
following	HTML:	<bdo	dir=’rtl’>,	and	use	</bdo>	when	done.

4.			The	Mark	of	the	Web	is	a	use	that	Microsoft’s	Internet	Explorer	browser
makes	of	HTML	comments	to	set	the	security	level	of	a	document.

5.			To	display	text	as	if	it	has	been	deleted,	use	HTML	such	as	the	following:
deleted	text.

6.			To	display	text	as	if	it	has	been	inserted,	use	HTML	such	as	the	following:
<ins>inserted	text</ins>.

7.			To	display	text	in	a	superscript	font,	place	it	within	^{and}	tags,
like	this:	July	23rd.

8.			A	good	way	to	display	short	quotations	is	between	the	<q>	and	</q>	tags.

9.			Long	quotations	can	be	displayed	by	placing	them	within	<blockquote>	and
</blockquote>	tags.

10.			To	display	preformatted	text	in	which	the	spaces	and	line	feeds	in	the	HTML
are	kept,	enclose	the	relevant	section	within	<pre>	and	</pre>	tags.

Lesson	8	Answers
1.			To	create	an	HTML5	canvas,	you	use	the	<canvas>	and	</canvas>	tags.

2.			In	non-HTML5-compatible	browsers,	<canvas>	tags	are	ignored,	and	any	text
or	HTML	placed	inside	the	tags	is	displayed.

3.			Once	an	HTML	element	has	been	given	an	ID,	it	can	be	referenced	from
JavaScript	by	passing	that	ID	to	the	getElementById()	function.

http://mydomain.com/news.htm#subsection’>Clickme
http://othersite.com/news.html’></iframe

4.			GPS	stands	for	Global	Positioning	System.

5.			Local	Storage	is	a	new	HTML5	technology	that	is	superior	to	cookies	in	that
it	provides	far	greater	storage	space	and	much	easier	access.

6.			The	tags	<audio>	and	<video>	have	been	added	to	HTML5	to	handle
multimedia.

7.			To	allow	fallback	to	Flash	for	playing	media,	you	can	pull	in	a	player	using
the	<embed>	and	</embed>	tags.

8.			Microdata	is	the	new	HTML5	technology	that	helps	to	provide	additional
information	about	the	contents	of	a	document	by	describing	its	parts	very	precisely.

9.			With	HTML5,	programmers	can	now	offload	background	JavaScript	tasks	to
web	workers,	which	are	then	maintained	automatically	by	the	browser.

10.			MIME	used	to	stand	for	Multipurpose	Internet	Mail	Extensions,	but	that	has
since	changed	to	Multipurpose	Internet	Media	Extensions	(more	simply	referred	to
as	Internet	Media	Types	these	days).

Lesson	9	Answers
1.			The	DOM	is	the	Document	Object	Model	used	by	HTML	and	consists	of	all

the	elements	and	sub-elements	as	objects	and	properties	that	can	be	accessed	from
JavaScript.

2.			To	change	a	web	document’s	title,	you	can	assign	a	new	value	to	the
document.title	property,	like	this:	document.title	=	’New	title’.

3.			You	can	create	a	JavaScript	object	from	an	HTML	element	by	giving	the
element	a	unique	ID,	which	you	can	then	pass	to	the	getElementById()	function,
which	will	return	an	object	based	on	that	element.

4.			A	canvas	must	be	given	an	ID	in	order	for	JavaScript	to	access	it,	like	this:
<canvas	id=’mycanvas’></canvas>.	This	ID	will	generally	be	turned	into	an	object
by	the	getElementById()	function.

5.			You	can	access	an	object’s	style	properties	from	JavaScript	by	appending
.style.	to	the	object,	followed	by	the	property’s	name	to	be	read	or	set,	like	this:
object.style.width	=	’100px’.

6.			The	purpose	of	the	O()	function	is	to	be	a	typing	shortcut	because	it	is	much
shorter	than	document.getElementById(),	and	it	supports	the	passing	of	either	an
ID	or	an	object.

7.			The	purpose	of	the	S()	function	is	to	provide	quick	and	easy	access	to	an
object’s	style	properties,	either	by	an	element’s	ID	or	by	object.

8.			In	order	for	drawing	functions	to	operate	correctly	on	a	canvas,	it	is	first
necessary	to	create	a	2D	context	object	from	the	canvas,	like	this:	context	=
canvas.getContext(’2d’).	This	context	object	has	properties	and	methods	that	are
used	to	write	to	and	read	from	the	canvas.

9.			To	copy	canvas	data	into	an	image,	you	can	use	the	toDataURL()	function,
which	extracts	all	the	image	data	from	a	canvas	and	reformats	it	in	such	a	way	that	it
can	be	directly	provided	as	the	value	for	the	src	attribute	of	an	image.

10.			To	create	a	single-line	comment	in	JavaScript,	place	the	character	pair	//
before	the	code	to	be	commented	out.

Lesson	10	Answers
1.			You	create	a	filled	rectangle	using	the	fillRect()	function.	For	example,	the

following	draws	a	square	that	is	100	pixels	wide	and	100	pixels	high	at	the	top	left
of	the	canvas:	context.fillRect(0,	0,	100,	100).

2.			To	change	the	fill	color,	assign	a	value	to	the	fillStyle	property.	For
example:	context.fillStyle	=	’green’.

3.			To	draw	a	clear	rectangle,	you	can	use	the	clearRect()	function,	like	this:
context.clearRect(0,	0,	100,	100).

4.			To	draw	a	rectangular	outline,	use	the	strokeRect()	function,	in	this	manner:
context.strokeRect(0,	0,	100,	100).

5.			Use	the	createLinearGradient()	function	to	create	a	linear	gradient,	like
this:	gradient	=	context.createLinearGradient(0,	0,	100,	100).

6.			Use	the	createRadialGradient()	function,	like	this:	gradient	=
context.createRadialGradient(100,	100,	0,	100,	100,	50)	to	create	a	radial
gradient.

7.			To	specify	the	colors	in	a	gradient,	use	the	addColorStop()	function,	like
this:	gradient.addColorStop(0,	’yellow’).

8.			To	use	an	image	for	a	pattern	fill,	call	the	createPattern()	function,	like
this:	pattern	=	context.createPattern(image,	’repeat’).

9.			The	four	different	types	of	pattern	fill	are	repeat,	no-repeat,	repeat-x,
and	repeat-y,	which	are	passed	as	string	values	in	the	second	argument	to	the
createPattern()	function.

10.			To	ensure	an	image	has	been	loaded	before	you	use	it,	you	must	attach	a
function	to	the	image	object’s	onload	event.	Place	the	code	that	uses	this	image	in
the	function.

Lesson	11	Answers
1.			To	choose	the	font	for	writing	to	a	canvas,	you	assign	values	to	the	font

property,	like	this:	context.font	=	’16px	Times’.

2.			To	write	outlined	text	to	a	canvas,	you	call	the	strokeText()	function,	like
this:	context.strokeText(’Text’,	100,	100).

3.			The	relative	measurement	units	supported	by	the	canvas	are	em,	ex,	px,	and

%.

4.			The	fixed	measurement	units	supported	by	the	canvas	are	in,	cm,	mm,	pt,
and	pc.

5.			You	write	filled	text	to	a	canvas	with	the	fillText()	function,	like	this:
context.fillText(’Text’,	100,	100).

6.			To	center-align	text	on	a	canvas,	you	would	use	a	command	such	as	this:
context.textAlign	=	’center’.

7.			The	full	list	of	values	supported	by	the	textAlign	property	includes	start,
end,	left,	right,	and	center.

8.			To	change	the	horizontal	line	about	which	text	will	be	based,	assign	a	value	to
the	textBaseline	property,	like	this:	context.textBaseline	=	’top’.

9.			The	values	supported	by	the	textBaseline	property	are	top,	middle,
alphabetic,	hanging,	and	bottom.

10.			You	can	determine	the	width	in	pixels	that	a	text-writing	call	will	require	by
calling	the	measureText()	function.	The	width	property	of	the	object	it	returns
contains	the	text	width.

Lesson	12	Answers
1.			You	can	change	the	width	of	subsequent	lines	drawn	on	the	canvas	by

assigning	a	value	to	the	lineWidth	property,	like	this:	context.lineWidth	=	8.

2.			To	change	the	way	lines	start	and	end,	assign	any	of	the	values	butt,	round,
or	square	to	the	lineCap	property,	like	this:	context.lineCap	=	’round’.	To
change	the	way	lines	join	to	each	other,	assign	any	of	the	values	round,	bevel,	or
miter	to	the	lineJoin	property,	like	this:	context.lineJoin	=	’bevel’.	To	extend
the	limit	of	mitered	line	joins,	you	can	assign	a	numeric	value	to	the	miterLimit
property,	like	this:	context.miterLimit	=	7.

3.			To	start	and	end	a	path,	call	the	beginPath()	and	closePath()	functions	of
the	canvas	context.

4.			To	move	the	drawing	position	of	a	path	without	creating	a	line,	use	the
moveTo()	function,	like	this:	context.moveTo(100,	100).

5.			To	create	a	line	within	a	path,	you	can	use	the	lineTo()	function,	like	this:
context.lineTo(100,	100).

6.			To	apply	a	path	to	the	canvas	as	a	line,	use	the	stroke()	function,	like	this:
context.stroke().	To	apply	a	path	to	the	canvas	as	a	filled	area,	use	the	fill()
function,	like	this:	context.fill().

7.			To	draw	an	outlined	rectangle,	call	the	strokeRect()	function,	like	this:
context.strokeRect(0,	0,	100,	100).	To	draw	a	filled	rectangle,	call	the
fillRect()	function,	like	this:	context.fillRect(0,	0,	100,	100).

8.			You	can	create	all	or	part	of	a	circle	using	the	arc()	function,	like	this	(which

creates	a	circle):	context.arc(100,	100,	50,	0,	Math.PI	*	2).

9.			To	create	an	arc	from	one	point	to	another	based	on	imaginary	tangents,	call
the	arcTo()	function,	like	this:	context.arcTo(0,	0,	100,	0,	100).

10.	To	create	a	curve	that	is	modified	by	one	imaginary	attractor,	you	can	call	the
quadraticCurveTo()	function,	passing	the	coordinates	of	the	attractor	and
destination,	like	this:	context.quadraticCurveTo(0,	0,	100,	100).	To	create	a
curve	that	is	modified	by	two	imaginary	attractors,	call	the	bezierCurveTo()
function,	passing	the	two	sets	of	attractor	coordinates	and	the	destination,	like	this:
context.bezierCurveTo(0,	0,	0,	100,	100,	100).

Lesson	13	Answers
1.			To	draw	an	image	to	the	canvas,	you	use	the	drawImage()	function,	like	this:

context.drawImage(image,	20,	20).

2.			To	resize	an	image	when	it	is	drawn,	you	can	add	an	additional	pair	of
arguments	to	the	drawImage()	function	for	its	new	width	and	height	in	pixels,	like
this:	context.drawImage(image,	20,	20,	100,	100).

3.			To	ensure	that	an	image	is	ready	for	use	before	drawing,	attach	a	function	to
the	image	object’s	onload	event,	and	place	your	image-using	code	in	that	function.

4.			To	easily	copy	one	portion	of	a	canvas	to	another,	use	the	canvas	itself	as	the
image,	like	this:	context.drawImage(canvas,	200,	200).

5.			The	four	properties	used	to	add	and	modify	shadows	underneath	drawn
objects	are	shadowOffsetX,	shadowOffsetY,	shadowBlur,	and	shadowColor.

6.			To	grab	all	the	image	pixel	data	from	an	image	into	a	form	that	is	editable,
you	can	call	the	getImageData()	function,	in	this	way:	imagedata	=
context.getImageData(0,	0,	100,	100).

7.			Once	image	data	has	been	grabbed	from	a	canvas	and	placed	in	an	object,	the
object’s	data	sub-object	is	an	array	containing	the	pixel	data.

8.			The	four	components	of	each	pixel	are	its	red,	green,	blue,	and	alpha
transparency	values.	These	appear	sequentially	in	image	data,	with	four	elements	to
a	pixel.

9.			The	function	used	to	write	image	data	to	the	canvas	is	putImageData(),	like
this:	context.putImageData(imagedata,	0,	0).

10.			To	create	a	new	object	containing	blank	image	data,	you	can	call	the
createImageData()	function,	as	in	this	example:	imagedata	=
createImageData(320,	240).

Lesson	14	Answers
1.			To	change	the	type	of	compositing	used	to	draw	to	the	canvas,	assign	one	of

the	following	values	to	the	globalCompositeOperation	property:	source-over,

source-in,	source-out,	source-atop,	destination-over,	destination-in,

destination-out,	destination-atop,	lighter,	darker,	copy,	or	xor,	like	this:
context.globalCompositeOperation	=	’lighter’.

2.			To	set	the	transparency	of	future	drawing	operations,	assign	a	value	between
0.0	(fully	transparent)	and	1.0	(no	transparency)	to	the	globalAlpha	property,	like
this:	context.globalAlpha	=	0.3.

3.			To	change	the	scale	for	future	drawing	operations,	call	the	scale()	function,
in	the	following	manner	(which	scales	horizontal	values	up	by	50	percent,	and
vertical	ones	down	by	50	percent):	context.scale(1.5,	0.5).

4.			You	can	easily	resume	previous	settings	after	changing	the	scaling	one	or
more	times	by	first	calling	save(),	like	this:	context.save(),	issuing	all	your
scaling	and	drawing	commands,	and	then	calling	restore(),	like	this:
context.restore()	to	return	scaling	to	its	previous	state.

5.			To	rotate	the	angle	of	future	drawing	operations,	call	the	rotate()	function,
like	this	(which	rotates	by	90	degrees):	context.rotate(Math.PI/2).

6.			There	are	2	×	π	radians	(or	just	over	6)	in	360	degrees,	and	one	radian	is	about
57	degrees.	The	best	way	to	use	radians	is	as	fractions	and	multiples	of	Δ.	One
degree	is	Δ	/	180,	and	the	value	of	Δ	is	about	3.1415927,	but	you	can	use	the
JavaScript	alternative	of	Math.PI	so	that	you	don’t	have	to	remember	the	value.
Conversion	between	the	two	can	be	achieved	in	JavaScript	as	follows:	radians	=
Math.PI	/	180	*	degrees.

7.			To	move	the	origin	of	future	drawing	operations	from	its	default	location	at
0,0,	call	the	translate()	function,	like	this:	context.translate(100,	100).

8.			To	rotate	an	object	around	its	center	before	drawing	it	to	the	canvas,	first	call
the	translate()	function	to	move	the	origin,	passing	the	center	of	where	you	intend
to	place	the	object	as	a	pair	of	coordinates.	Next,	issue	the	call	to	rotate(),	and
then	draw	the	object	on	the	canvas	with	its	top-left	corner	50	percent	of	its	width	to
the	left	of	the	new	origin,	and	50	percent	of	its	height	up	from	the	new	origin.	For
example,	if	the	object	is	a	square	that	is	100	pixels	wide	and	high,	the	destination
location	should	be	at	-50,-50	(since	the	new	origin	is	at	the	object’s	center).

9.			You	can	scale,	rotate,	and	skew	all	at	the	same	time	by	using	the	transform()
function,	like	this:	context.transform(1.5,	0.5,	0.5,	1.5,	10,	10).

10.			To	create	absolute	transformations	(as	opposed	to	relative	ones	from	the
current	transform	settings),	you	can	call	the	setTransform()	function,	which	is	the
same	as	transform()	except	that	the	scaling	and	other	factors	are	first	reset	before
the	supplied	values	are	applied.

Lesson	15	Answers
1.			The	most	common	form	of	geolocation	positioning	hardware	is	called	GPS

(for	Global	Positioning	System).	It	uses	a	number	of	orbiting	satellites	to	triangulate
a	device’s	location	very	accurately,	including	height	above	sea	level.

2.			To	determine	whether	a	browser	supports	geolocation,	test	whether	the	type	of
the	geolocation	property	is	a	value	of	undefined	(if	so,	geolocation	is	not
available),	like	this:	if	(typeof	navigator.geolocation	==	’undefined’)	….

3.			To	request	location	data	from	a	browser,	call	the	getCurrentPosition()
function,	passing	it	the	names	of	two	functions—one	to	be	called	if	permission	to
access	the	user’s	location	is	granted,	the	other	to	be	called	if	it	isn’t,	like	this:
navigator.geolocation.getCurrentPosition(granted,	denied).

4.			If	the	user	grants	permission	for	you	to	access	their	location,	the	data	will	be
supplied	to	the	function	you	created	to	receive	it	in	the	form	of	a	position	object.
This	object	will	have	two	properties	for	the	latitude	and	longitude:
position.coords.latitude	and	position.coords.longitude.

5.			If	the	user	doesn’t	grant	permission	to	access	their	location,	an	error	object	is
supplied	to	the	function	you	created	to	handle	this	instance.	This	object	will	have	a
code	property	containing	a	number	between	1	and	4	indicating	the	error	type.

6.			The	API	at	https://maps.googleapis.com/maps/api/js?sensor=false	will	give
you	access	to	Google	Maps	if	you	supply	it	as	the	value	to	the	src	attribute	of	a
<script>	tag.

7.			To	pass	the	latitude	and	longitude	to	display	to	the	Google	Maps	API,	you
should	supply	them	as	arguments	to	the	LatLng()	function,	like	this:	new
google.maps.LatLng(lat,	long).

8.			The	Google	Maps	zoom	property	accepts	values	between	1	for	fully	zoomed
out,	and	20	for	fully	zoomed	in.

9.			The	types	of	Google	Maps	that	can	be	displayed	are	satellite,	road	map,	or
hybrid,	by	attaching	one	of	the	constants	SATELLITE,	ROADMAP,	or	HYBRID	to	the
MapTypeId	object,	like	this:	google.maps.MapTypeId.HYBRID.

10.			IP	addresses	are	not	a	very	accurate	form	of	geolocation	for	a	number	of
reasons,	including	the	fact	that	an	IP	address	can	apply	to	a	proxy	server	anywhere
in	the	world.	But	even	if	not,	a	local	ISP	might	share	the	same	IP	numbers	among	its
customers	over	a	wide	geographical	area.	At	best,	IP	numbers	should	be	used	to
offer	just	a	hint	as	to	a	user’s	very	rough	location	when	a	better	location	method	is
not	available.

Lesson	16	Answers
1.			To	provide	access	to	typing	into	an	input	field	without	the	user	first	having	to

click	it,	use	the	autofocus	attribute,	like	this:	<input	type=’text’	name=’name’
autofocus=’autofocus’>.

2.			You	can	allow	previous	values	that	have	been	entered	for	the	current	input
field’s	name	to	be	selected	by	the	user	with	the	autocomplete	attribute,	like	this:
<input	type=’text’	name=’name’	autocomplete=’on’>.

3.			The	list	attribute	supplies	a	list	id	to	an	input	from	which	a	selection	can	be

https://maps.googleapis.com/maps/api/js?sensor=false

made	by	the	user,	like	this:	list=’items’.	The	list	itself	should	be	a	collection	of
<option>	elements	inside	a	<datalist>	element	given	the	id	name	supplied	as	the
value	for	the	list	attribute,	like	this:	<datalist	id=’items’>.

4.			To	set	minimum	and	maximum	limits	for	an	input,	assign	values	to	the	min
and	max	attributes,	like	this:	<input	type=’number’	name=’age’	min=’13’
max=’99’>.

5.			To	enable	uploading	of	more	than	one	file	at	a	time	via	a	form,	use	the
multiple	attribute,	like	this:	<input	type=’file’	name=’files’
multiple=’multiple’>.

6.			You	can	place	text	in	an	empty	input	field	to	prompt	the	user	for	the	type	of
input	expected,	by	assigning	that	text	to	the	placeholder	attribute,	like	this:	<input
type=’text’	name=’username’	placeholder=’Enter	Username’>.

7.			To	ensure	that	an	input	must	be	completed	before	a	form	is	submitted,	you	use
the	required	attribute,	like	this:	<input	type=’password’	name=’pass’
required=’required’>.

8.			The	attribute	pattern=’[\w]{5,10}’	tells	the	web	browser	not	to	allow	the
form	to	be	submitted	unless	this	input	field	consists	of	between	5	and	10	(inclusive)
uppercase	and/or	lowercase	letters,	and/or	digits,	and/or	the	underline	character	(\w
means	any	word	character).

9.			You	can	offer	a	color	picker	in	an	input	(in	browsers	that	support	it)	by	using
an	input	type	of	color,	like	this:	<input	name=’background’	type=’color’>.

10.			You	can	call	up	a	calendar	date	picker	in	an	input	(in	browsers	that	support
it)	by	using	an	input	type	of	date,	like	this:	<input	name=’meeting’
type=’date’>.

Lesson	17	Answers
1.			Local	storage	is	a	better	solution	than	cookies	because	it	provides	over	a

thousand	times	the	storage	capacity	per	domain,	and	it	is	easily	accessed	as	key	and
value	pairs.

2.			You	can	determine	whether	local	storage	is	available	in	a	browser	by	testing
the	type	of	the	localStorage	object,	like	this:	if	(typeof	localStorage	==
’undefined’).	If	it	is	undefined,	then	local	storage	is	not	available.

3.			To	store	an	item	of	local	storage	data,	use	the	setItem()	function,	like	this:
localStorage.setItem(’key’,	’value’).

4.			To	retrieve	an	item	of	local	storage	data,	use	the	getItem()	function,	like	this:
value	=	localStorage.getItem(’key’).

5.			To	remove	an	item	from	local	storage,	use	the	removeItem()	function,	like
this:	localStorage.removeItem(’key’).

6.			To	clear	all	the	data	relating	to	your	domain	in	local	storage,	use	the	clear()
function,	like	this:	localStorage.clear().

7.			To	post	a	message	to	another	document	loaded	into	the	browser,	call	the
postMessage()	function,	like	this:	window.postMessage(’Message	text’,
’http://domain.com’).

8.			To	listen	for	messages	from	other	loaded	documents,	attach	a	function	to	the
onmessage	event	of	the	window,	like	this:	window.onmessage	=	function(event)
{}.	Within	the	curly	braces	you	can	access	event.data	to	read	the	message.

9.			To	ensure	that	you	post	messages	only	to	the	documents	you	want	to	receive
them,	pass	the	correct	domain	as	the	second	argument	to	postMessage().

10.			To	ignore	any	message	received	from	documents	from	which	you	do	not
wish	to	receive	them,	discard	those	that	do	not	originate	from	your	domain	by
checking	the	origin	property	of	the	onmessage	event	object,	like	this:	if
(event.origin	==	’http://domain.com’).

Lesson	18	Answers
1.			To	embed	audio	in	an	HTML5	document,	you	use	the	<audio>	tag.

2.			The	four	types	of	audio	format	supported	by	HTML5	browsers	are	AAC,
MP3,	PCM,	and	OGG	Vorbis.

3.			To	ensure	that	your	audio	will	play	on	all	major	browsers	and	platforms,	you
need	to	provide	your	audio	in	two	formats.	One	of	these	should	be	OGG	Vorbis,	and
the	other	can	be	either	AAC	or	MP3.

4.			The	purpose	of	the	<source>	tag	is	to	offer	an	audio	file	to	the	browser.	If	the
browser	supports	the	audio	type	and	it	is	the	first	audio	file	supported,	then	it	will	be
selected	for	playing.

5.			For	playing	audio,	the	<source>	tag	requires	two	attributes	to	be	supplied	to
it:	the	URL	of	the	audio	file	in	the	src	attribute,	and	the	type	of	the	audio	file	in	the
type	attribute,	like	this:	<source	src=’music.mp3’	type=’audio/mpeg’>.

6.			To	make	audio	play	on	page	load,	supply	the	autoplay	attribute	to	the
<audio>	tag,	like	this:	<audio	autoplay>.

7.			You	can	control	whether	or	not	the	audio	controls	are	displayed	by	either
including	or	omitting	the	controls	attribute	from	the	<audio>	tag,	like	this:	<audio
controls>.

8.			To	set	a	piece	of	audio	to	play	over	and	over,	add	the	loop	attribute	to	the
<audio>	tag,	like	this:	<audio	loop>.

9.			To	cause	audio	to	begin	loading	even	before	the	user	selects	Play,	add	the
preload	attribute	to	the	<audio>	tag,	like	this:	<audio	preload>.

10.			You	can	support	older	browsers	that	do	not	recognize	HTML5	audio	by
embedding	a	Flash	audio	player	within	the	<audio>	and	</audio>	tags.	HTML5
browsers	will	ignore	it,	while	older	ones	will	ignore	the	<audio>	tags	and	will	run
the	Flash	plug-in.

Lesson	19	Answers
1.			To	embed	video	in	an	HTML5	document,	you	use	the	<video>	tag.

2.			The	three	types	of	video	format	supported	by	HTML5	browsers	are
MP4/H.264,	OGG/Theora,	and	WebM/VP8.

3.			To	ensure	that	your	video	will	play	on	all	major	browsers	and	platforms,	you
need	to	provide	your	video	in	two	formats.	One	of	these	should	be	MP4,	and	the
other	should	be	OGG.

4.			The	purpose	of	the	<source>	tag	is	to	offer	a	video	file	to	the	browser.	If	the
browser	supports	the	video	type	and	it	is	the	first	video	file	supported,	then	it	will	be
selected	for	playing.

5.			For	playing	audio,	the	<source>	tag	requires	two	attributes	to	be	supplied	to
it:	the	URL	of	the	video	file	in	the	src	attribute,	and	the	type	of	the	video	file	in	the
type	attribute,	like	this:	<source	src=’video.mp4’	type=’video/mp4’>.

6.			To	make	video	play	on	page	load,	supply	the	autoplay	attribute	to	the
<video>	tag,	like	this:	<video	autoplay>.

7.			You	can	control	whether	or	not	the	video	controls	are	displayed	by	either
including	or	omitting	the	controls	attribute	from	the	<video>	tag,	like	this:	<video
controls>.

8.			To	set	a	video’s	width	and	height,	assign	values	to	the	width	and	height
attributes	of	the	<video>	tag,	like	this:	<video	width=’640’	height=’480’>.

9.			To	display	an	image	of	your	choice	as	a	placeholder	for	where	the	video	will
play,	use	the	poster	attribute	in	the	<video>	tag,	like	this:	<video
poster=’myimage.jpg’>.

10.			You	can	support	older	browsers	that	do	not	recognize	HTML5	video	by
embedding	a	Flash	video	player	within	the	<video>	and	</video>	tags.	HTML5
browsers	will	ignore	it,	while	older	ones	will	ignore	the	<video>	tags	and	will	run
the	Flash	plug-in.

Lesson	20	Answers
1.			Microdata	makes	text	that	is	easily	understandable	by	people	due	to	context

equally	understandable	to	machines,	by	explaining	each	part.

2.			Two	attributes	used	to	denote	microdata	are	itemtype	for	the	type	of
microdata,	and	itemprop	for	each	property.	Other	microdata	attributes	include
itemid,	itemref,	and	itemscope.

3.			Web	workers	are	JavaScript	programs	that	are	set	to	work	in	the	background
under	the	control	of	the	browser	to	undertake	tasks	separate	from	the	main
foreground	program.

4.			You	create	a	new	web	worker	by	calling	the	Worker()	function,	passing	it	the

URL	of	a	JavaScript	program	to	run,	like	this:	worker	=	new	Worker
(’program.js’).

5.			You	receive	messages	from	a	web	worker	by	attaching	a	function	to	the
onmessage	event	of	the	worker	object	that	is	returned	by	the	call	to	Worker().	The
data	property	of	the	object	passed	to	this	function	contains	the	message.

6.			Offline	web	applications	are	online	web	applications	that	can	also	run	offline
because	all	their	associated	files	get	downloaded	locally	by	the	browser.

7.			Offline	web	applications	use	the	MIME	type	text/cache-manifest.	When	a
web	browser	encounters	a	file	of	this	type,	it	knows	that	it	contains	information
about	the	files	it	should	download	to	enable	an	app	to	run	offline.

8.			In	order	to	implement	drag	and	drop	in	a	document,	you	need	to	attach
handler	functions	to	the	ondragstart	event	of	any	object	to	be	dragged.	You	must
also	attach	to	the	ondragover	and	ondrop	events	of	any	element	into	which	items
can	be	dropped.

9.			The	purpose	of	calling	the	preventDefault()	function	in	the	drag-and-drop
handlers	is	to	override	the	default	action	of	disallowing	drag-and-drop	operations,
thus	making	these	operations	available.

10.			The	functions	that	handle	the	passing	of	dragged-and-dropped	items	are
setData()	and	getData(),	which	are	methods	of	the	dataTransfer	property	of	the
events	being	handled.

Index

Please	note	that	index	links	point	to	page	beginnings	from	the	print	edition.	Locations	are
approximate	in	e-readers,	and	you	may	need	to	page	down	one	or	more	times	after
clicking	a	link	to	get	to	the	indexed	material.

A
<a>	tag,	58

AAC	codec,	214

<abbr>	tag,	71

abbreviations,	71

absolute	URLs,	55

<acronym>	tag,	71

action	attribute,	61

addColorStop()	function,	115–120

<address>	tag,	72

Ajax	technology,	60

align	attribute

images,	36,	40

tables,	45–46

alphabetic	value	for	text,	129

alt	attribute,	36

ampersands	(&)	for	query	strings,	57

anchors	for	hyperlinks,	59–60

Android	operating	system

audio	support,	214

video	support,	220

angle	brackets	(<>)	for	tags,	8

angles	for	rotation,	174–176

appendChild()	method,	232

Apple	iOS	operating	system

audio	support,	214

video	support,	220

<applet>	tag,	72

arc()	function,	144–147

arcTo()	function,	147–149

<area>	tag,	72

attributes	overview,	8–9

audio,	213

<audio>	and	<source>	tags,	215–217

codecs,	213–214

overview,	93–94

<audio>	tag,	93–94,	215–217

audio.swf	Flash	player,	216

autocomplete	attribute,	92,	194

autofocus	attribute,	92,	194

autoplay	attribute

audio,	216

video,	221

B
	tag,	24

background	processing,	95,	227–229

<base>	tag,	73–74

<basefont>	tag,	29–30,	74

<bdo>	tag,	74

beginPath()	function,	137

Berners-Lee,	Timothy,	3–4

bezierCurveTo()	function,	150–151

bgcolor	attribute

fonts,	30

tables,	45

<big>	tag,	24,	75

Bing	maps,	190

<blockquote>	tag,	75–76

blur	for	shadows,	157

body	sections,	19

comments,	19–20

<div>	and		tags,	20–21

headings,	21–22

line	breaks,	22–23

paragraphs,	22

text	emphasis,	24–26

<body>	tag,	16

bold	text,	24

border	attribute

images,	36

tables,	45

bordercolor	attribute,	45

bottom	value	for	text,	129

	tag,	22–23

browsers

audio	support,	214,	216–217

invention	of,	3

video	support,	220

<button>	tag,	64–65

C
canvas

accessing,	105–106

<canvas>	tag,	104–105

compositing	and	transparency,	167–171

converting	to	images,	106–108

curves,	144–151

gradients,	114–120

images,	153–156

JavaScript	overview,	97–104

lines,	135–137

overview,	88–90

paths,	137–143

patterns,	120–123

pixel	editing,	159–164

rectangles,	111–114

shadows,	156–159

as	source	image,	156

text.	See	text

transformations,	170–181

<canvas>	tag,	88–90,	104–105

<caption>	tag,	48

Cascading	Style	Sheets	(CSS)

description,	9

emphasis,	26

images,	39

including,	13–14

cellpadding	attribute,	45

cellspacing	attribute,	45

<center>	tag,	25,	76

checkbox	attribute,	63

Chrome	browser

audio	support,	214

video	support,	220

citations,	76

<cite>	tag,	76

class	attribute,	9

clear	attribute

images,	40

line	breaks,	23

clear()	function,	208,	210

clearRect()	function,	113

clip()	function,	140–143,	159

closePath()	function,	137

cm	font	units,	126

<code>	tag,	77–78

codecs

audio,	213–214

video,	219–223

<col>	tag,	78

<colgroup>	tag,	78

color

canvas,	107

columns,	78

curves,	148

fills,	112–113

fonts,	30–33,	74

form	input,	201

gradients,	115,	117–120

images,	36

pixels.	See	pixel	editing

rectangles,	111–113

shadows,	157,	159

tables,	45

text,	130–132

color	input	type,	201

colspan	attribute,	49–52

columns	in	tables,	45–52

comments

conditional,	70

inserting,	19–20

JavaScript,	103

comparisons,	70

compositing,	167

globalAlpha	property,	169–170

globalCompositeOperation	property,	167–169

conditional	HTML,	69–82

controls	attribute

audio,	216

video,	221

converting

canvas	to	images,	106–108

degrees	to	radians,	176

cookies,	93

coordinates

arcs,	144

gradients,	114–115,	117

copy	value	for	compositing,	169

createImageData()	function,	164

createLinearGradient()	function,	114–117

createPattern()	function,	121–123,	133

createRadialGradient()	function,	117

cross-document	messaging,	210–212

CSS	(Cascading	Style	Sheets)

description,	9

emphasis,	26

images,	39

including,	13–14

curves,	144

arc(),	144–147

arcTo(),	147–149

bezierCurveTo(),	150–151

quadraticCurveTo(),	149–150

D
darker	value	in	compositing,	169

data	lists	for	forms,	92–93

data[]	array,	160–161

<datalist>	tag,	196–197

date	input	type,	201

date	pickers,	201–202

datetime	input	type,	202

datetime-local	input	type,	202

<dd>	tag,	44

defaults

audio	support,	214

fonts,	74

gradients,	114

image	alignment,	40

image	size,	36

image	type,	108

lists,	42–44

paragraph	spacing,	22

video	support,	220

definition	lists,	44

degrees,	176

	tag,	25,	79

denied()	function,	187

destination-atop	value,	169

destination-in	value,	169

destination-out	value,	169

destination-over	value,	169

<dfn>	tag,	71

dir	attribute,	74

<dir>	tag,	78

direction

arcs,	145,	147

text,	74

<div>	tag

geolocation,	188

overview,	20–21

<dl>	tag,	44

DNS	(Domain	Name	System),	7

<!DOCTYPE>	declarations,	11–12

DOM	(Document	Object	Model),	97–98

Domain	Name	System	(DNS),	7

dots	(.)	in	relative	URLs,	58

double	quotation	marks	(“)	in	tags,	8

drag	and	drop	support,	231–232

drawImage()	function,	153–156

<dt>	tag,	44

E
em	font	units,	126

	tag,	25

email	input	type,	203

<embed>	tag,	94

emphasis	for	text,	24–26

enctype	attribute,	61

equal	signs	(=)	in	attributes,	8

events

drag	and	drop,	231–232

images,	121–122,	132

web	workers,	228–229

ex	font	units,	126

exclamation	points	(!)	in	comments,	19,	70

extending	rows	and	columns,	49–52

F
<fieldset>	tag,	79

fill()	function,	140

fillRect()	function,	90,	111–112,	116

fillstyle	property,	112–113

fillText()	function,	129–133

Firefox	browser

audio	support,	214

video	support,	220

Flash	programming	environment,	213–214

flowplayer.swf	files,	222–223

font	property,	125–126

	tag,	29–35,	80

fonts.	See	also	text

color,	30–33

faces,	29–31,	33–35

font	property,	125–126

size	units,	126

form	attribute,	194–195

formaction	attribute,	92,	195

formenctype	attribute,	195

formmethod	attribute,	195

formnovalidate	attribute,	92,	196,	198

forms

autocomplete	attribute,	194

autofocus	attribute,	194

<button>	tag,	64–65

creating,	60–62

date	and	time	pickers,	201–202

fields,	79

form	attribute,	194–195

HTML5	enhancements,	92–93

input	types,	200–204

<input>	tag,	63

JavaScript	for,	99–108

<label>	tag,	65

name	attribute,	63

new	attributes,	193

overrides,	195–200

<select>	tag,	64

<textarea>	tag,	64

value	attribute,	63

<forms>	tag,	61

formtarget	attribute,	92,	196

frames,	65–66

<frameset>	tag,	65,	80

G
gateways,	5

geolocation

document	example,	188–190

geolocation	property,	186

getCurrentPosition(),	186–187

GPS	service,	191–192

JavaScript	for,	185–190

overview,	90–91

geolocation	property,	186

Get	requests,	7

getContext()	function,	106

getCurrentPosition()	function,	186–187

getElementById()	function,	100

getImageData()	function,	159–160

getItem()	function,	208

.gif	images,	36

Global	Positioning	Systems	(GPS),	91,	191–192

globalAlpha	property,	169–170

globalCompositeOperation	property,	167–169

Google	Android	operating	system

audio	support,	214

video	support,	220

Google	Chrome	browser

audio	support,	214

video	support,	220

Google	maps,	188–190

GPS	(Global	Positioning	Systems),	91,	191–192

gradients

addColorStop(),	117–120

createLinearGradient(),	116–117

createRadialGradient(),	117

creating,	114–116

text,	130–131

granted()	function,	186–187

greater	than	signs	(>)	in	comments,	19,	70

H
<h1>	tag,	21–22

H.264	codec,	220

hanging	value	for	text,	129

<head>	tag,	13

headings,	21–22

height	attribute

canvas,	105

forms,	196

images,	36

tables,	45–46

video,	221

hexadecimal	digits	for	color,	33

hidden	attribute,	63

horizontal	rules,	80

<hr>	tag,	80

.htaccess	file,	230

.htm	and	.html	extensions,	6

<html>	tag,	12–13

HTML5	overview,	87

HTTP	(Hyper	Text	Transfer	Protocol),	4–5

hyperlinks

creating,	55–56,	58–60

query	strings,	56–57

relative	URLs,	57–58

hyphens	(-)	in	comments,	19,	70

I
<i>	tag,	25

id	attribute,	9

ideographic	value	for	text,	129

ids	for	form	access,	100

if	statements,	70

<iframe>	tag,	66,	80–81

iframes,	65–66,	80–81

Image()	function,	121

images

canvas	as	source,	156

converting	canvas	to,	106–108

displaying,	36–40

drawImage(),	153–156

URLs	in,	59

imagetype	argument,	108

	tag,	36–40

in	font	units,	126

input	types	in	forms,	200–204

<input>	tag,	63,	92–93

Internet	Explorer	browser

audio	support,	214

conditional	HTML	for,	69–82

local	documents,	12

video	support,	220

inverting	images,	163

IP	(Internet	Protocol)	addresses	for	geolocation,	191

<isindex>	tag,	81

isPointInPath()	function,	143

italic	text,	25

itemid	attribute,	95,	225

itemprop	attribute,	95,	225

itemref	attribute,	95,	225

itemscope	attribute,	95,	225

itemtype	attribute,	95,	225

J
JavaScript,	88

canvas,	89–90,	105–106

form	element	access	from,	99–108

for	geolocation,	185–190

incorporating,	14–15

overview,	97–99

joined	lines,	136–137

.jpg	images,	36

K
<kbd>	tag,	78

L
<label>	tag,	65

lat	setting	for	geolocation,	190

layout,	11

<body>	tag,	16

<!DOCTYPE>	declarations,	11–12

<head>	tag,	13

<html>	tag,	12–13

JavaScript,	14–15

metadata,	15–16

style	sheets,	13–14

<title>	tag,	13

<legend>	tag,	79

less	than	signs	(<)	in	comments,	19,	70

	tag,	42

lighter	value,	169

line	breaks,	22–23

linear	gradients,	114–116

lineCap	property,	136

lineJoin	property,	136–137

lines

lineCap	property,	136

lineJoin	property,	136–137

lineWidth	property,	128,	135

miterLimit	property,	137

lineTo()	function,	137–138

lineWidth	property,	128,	135

<link>	tag,	14

links

creating,	55–56,	58–60

query	strings,	56–57

relative	URLs,	57–58

list	attribute,	92,	196–197

lists

building,	41–43

defaults,	43–44

definition,	44

local	documents	in	Internet	Explorer,	12

local	storage,	93,	207–210

long	setting	for	geolocation,	190

loop	attribute

audio,	216

video,	221

lossless	codecs,	214

lowercase	style,	23

lt	keyword,	70

M
MAC	(Media	Access	Control)	addresses	for	geolocation,	191

mapTypeId	setting	for	geolocation,	190

The	Mark	of	the	Web,	71

Math.PI	value,	146,	174

max	attribute,	93,	197

Media	Access	Control	(MAC)	addresses	for	geolocation,	191

<menu>	tag,	81

messaging,	cross-document,	210–212

<meta>	tag,	15–16

metadata,	15–16

method	attribute,	61

methods,	101

metrics	object,	133–134

microdata,	95,	225–227

middle	value	for	text,	129

MIME	(Multipurpose	Internet	Mail	Extensions),	229

min	attribute,	93,	197

miterLimit	property,	137

mm	font	units,	126

month	input	type,	202

moveTo()	function,	137–138

Mozilla	Firefox	browser

audio	support,	214

video	support,	220

MP3	codec,	214

MP4	codec,	219

multiple	attribute,	93,	198

Multipurpose	Internet	Mail	Extensions	(MIME),	229

N
name	attribute

forms,	63

hyperlinks,	59–60

named	colors,	31–32

negative	images,	163

new	keyword,	121

<noframes>	tag,	65

no-repeat	type	for	patterns,	121–122,	133

not	operator,	70–71

novalidate	attribute,	198

number	input	type,	203

numbers	for	color,	33

O
O()	function,	101–102

offline	web	applications,	229–231

OGG	codec,	214,	219

	tag,	42

ondragover	events,	231–232

ondragstart	events,	231–232

ondrop	events,	231–232

onload	events,	121–122,	132,	154,	160

onmessage	event,	228–229

Opera	Firefox	browser

audio	support,	214

video	support,	220

<optgroup>	tag,	81–82

option	groups,	81–82

<option>	tag,	64,	81,	196–197

ordered	lists,	41–42

origin,	canvas,	177

P
<p>	tag,	22

paragraphs,	22

password	attribute,	63

paths,	137

beginPath()	and	closePath(),	137

clip(),	140–143

fill(),	140

isPointInPath(),	143

moveTo()	and	lineTo(),	137–138

rect(),	139

stroke(),	138

pattern	attribute,	93,	199

patterns

canvas,	120–123

regular	expressions,	199

text,	130,	132–133

pc	font	units,	126

PCM	codec,	214

percentages	for	font	units,	126

periods	(.)	in	relative	URLs,	58

pixel	editing,	159

createImageData(),	164

data[]	array,	160–161

getImageData(),	159–160

putImageData(),	161–164

.pl	and	.php	extensions,	7

placeholder	attribute,	93,	199–200

.png	images,	36

Post	requests,	7

poster	attribute,	221

postMessage()	function,	210–212

pound	symbol	(#)

color,	33

hyperlink	anchors,	59

<pre>	tag,	62,	77

preload	attribute

audio,	216

video,	221

programming	code,	77–78

proxies,	5

pt	font	units,	126

putImageData()	function,	161–164

px	font	units,	126

Q
<q>	tag,	75–76

quadraticCurveTo()	function,	149–150

query	strings	for	hyperlinks,	56–57

question	mark	character	(?)	in	query	strings,	57

QuickTime	media	player,	214

quotations,	75–76

R
radial	gradients,	117

radian	offsets	for	arcs,	144

radians,	174–176

radio	attribute,	63

radius	in	arcs,	144

range	input	type,	203

rect()	function,	139

rectangles

clearRect(),	113

fillRect(),	112

fillstyle	property,	112–113

rect(),	139

scaling,	171–173

strokeRect(),	113–114

regular	expressions,	199

relative	URLs,	57–58

removeItem()	function,	208–210

repeat	type	for	patterns,	121

repeat-x	type	for	patterns,	121–122

repeat-y	type	for	patterns,	121–122

request/response	sequence,	6–7

required	attribute,	200

restore()	function,	172–174

retrieving	local	storage,	208–209

road	maps,	190

rotate()	function,	174–176

routers,	5

rows	in	tables,	45–52

rowspan	attribute,	49–52

S
S()	function,	102–104

<s>	tag,	25

Safari	browser

audio	support,	214

form	support,	197–199

video	support,	220

<samp>	tag,	78

satellite	maps,	190

save()	function,	172–174

scale()	function,	170–174

<script>	tag,	14–15,	99–108

search	input	type,	204

security	zones,	71

<select>	tag,	64

serving	pages,	5

setData()	method,	232

setInterval()	function,	231

setItem()	function,	208–209

setTransform()	function,	181

shadowBlur	value,	157

shadowColor	value,	157

shadowOffsetX	value,	156

shadowOffsetY	value,	157

shadows,	156–158

shearing	squares,	179–180

single	quotation	marks	(’)	in	tags,	8

size

images,	155

text,	30,	75,	126

slash	(/)	characters

comments,	19,	103

in	tags,	8

in	URLs,	58

<small>	tag,	25,	75

<source>	tag

audio,	215–217

video,	220–222

source-atop	property,	169

source-in	property,	168

source-out	property,	168

source-over	value,	167–168

spaces	in	tags,	62

	tag,	20–21

src	attribute

audio,	216

images,	36

video,	221

start	attribute,	43

step	attribute,	93,	200

storage,	local,	93,	207–210

<strike>	tag,	25

strikethrough	text,	25

stroke()	function,	138

strokeRect()	function,	113–114

strokeText()	function,	127

	tag,	25

style	attribute,	9

style	sheets

description,	9

emphasis,	26

images,	39

including,	13–14

<style>	tag,	14

<sub>	tag,	26,	82

submit	attribute,	63

subscripted	text,	26,	82

<sup>	tag,	26,	82

superscripted	text,	26,	82

T
<table>	tag,	45–46

tables

creating,	44–45

rows	and	columns,	45–52,	78

tags

attributes,	8–9

description,	8

target	attribute	in	hyperlinks,	59

<td>	tag,	45–46

tel	input	type,	204

text

centering,	76

citations,	76

deleted,	79

direction,	74

emphasis,	24–26

fillText(),	129–133

font	property,	125–126

font	size	units,	126

programming	code,	77–78

quotations,	75–76

size,	75

strokeText(),	127

textAlign	property,	127–128

textBaseline	property,	129

width,	133–134

text	attribute,	63

textAlign	property,	127–128

<textarea>	tag,	64

textBaseline	property,	129

<th>	tag,	47

Theora	codec,	220

time	input	type,	202

time	pickers,	201–202

title	attribute,	9

<title>	tag,	13

toDataURL()	function,	107–108

top	value	for	text,	129

<tr>	tag,	45–46

transform()	function,	178–180

transformations,	170

rotate(),	174–176

scale(),	170–174

setTransform(),	181

transform(),	178–180

translate(),	176–177

translate()	function,	176–177

transparency,	169–170

<tt>	tag,	78

type	attribute

audio,	216

forms,	93

lists,	43

video,	221

U
<u>	tag,	26

	tag,	43

underlined	text,	26

unordered	lists,	42–43

url	input	type,	204

URLs	(Uniform	Resource	Locators)

absolute,	55

Get	requests,	7

in	images,	59

relative,	57–58

request/response	sequence,	6–7

V
value	attribute,	63

versions,	testing	for,	70–71

video,	219

codecs,	219–223

overview,	93–94

<video>	tag

new,	93–94

video	support,	220–222

Vorbis	codec,	214

VP8	codec,	220

W
web	applications

description,	95

offline,	229–231

web	messaging,	210–212

web	workers,	95,	227–229

WebM	codec,	220

week	input	type,	202

width	and	width	attribute

canvas,	105

forms,	196

images,	36

lines,	135

tables,	45–46

text,	133–134

video,	221

X
X	coordinates	for	arcs,	144

xor	value,	169

Y
Y	coordinates	for	arcs,	144

Z

zoom	setting	for	geolocation,	190

	Title Page
	Copyright Page
	Dedication
	Contents at a Glance
	Contents
	Acknowledgments
	Introduction
	PART I Basic HTML
	LESSON 1 An Introduction to HTML
	What Is HTML?
	HTTP and HTML Basics
	The Request/Response Sequence
	The Difference Between Get and Post Requests

	HTML Tags
	Tag Attributes

	Summary
	Self-Test Questions

	LESSON 2 The Layout of an HTML Document
	The <!DOCTYPE> Declaration
	Internet Explorer Tweak for Local Documents

	The <html> Tag
	The <head> Tag
	Creating a Document Title
	Including Style Sheets
	Incorporating JavaScript
	Passing Metadata

	The <body> Tag
	Summary
	Self-Test Questions

	LESSON 3 The HTML Document Body
	Inserting Comments
	The HTML 4.01 Tags
	The <div> and Tags
	Headings
	Paragraphs
	Line Breaks
	Text Emphasis

	Summary
	Self-Test Questions

	LESSON 4 Fonts, Colors, and Images
	Changing Font Face and Color
	 …
	 …
	 …
	<basefont>
	<body bgcolor=′…′>
	The Named Colors
	Coloring by Numbers
	Font Faces

	Displaying Images
	Summary
	Self-Test Questions

	LESSON 5 Creating Lists and Tables
	Building Lists
	Overriding the Defaults
	Definition Lists

	Creating Tables
	Table Rows and Columns
	Extending Rows and Columns

	Summary
	Self-Test Questions

	LESSON 6 Links, Forms, and Frames
	Using Hyperlinks
	The Query String
	Relative URLs
	Creating Links

	Building Forms
	The <input> Tag
	The <textarea> Tag
	The <select> Tag
	The <button> Tag
	The <label> Tag

	Frames and Iframes
	Summary
	Self-Test Questions

	LESSON 7 Using the Remaining HTML4 Tags
	Conditional HTML for Internet Explorer
	Simple Comparisons
	Higher or Lower Values
	The Not Operator
	The Mark of the Web

	<abbr> … </abbr>
	<acronym> … </acronym> (Obsolete)
	<address> … </address>
	<applet> … </applet> (Obsolete)
	<area>
	<base>
	<basefont> (Obsolete)
	<bdo> … </bdo>
	<big> … </big> (Obsolete) and <small> … </small>
	<blockquote> … </blockquote>
	<center> … </center> (Obsolete)
	<cite> … </cite>
	<code> … </code>
	<col> and <colgroup>
	 …
	<fieldset> … </fieldset>
	 … (Obsolete)
	<frameset> (Obsolete)
	<hr>
	<iframe> … </iframe>
	<isindex> … </isindex> (Obsolete)
	<menu> … </menu> (Reserved)
	<optgroup> … </optgroup>
	_… and […]
	Summary
	Self-Test Questions

	PART II HTML5 and the Canvas
	LESSON 8 What’s New in HTML5
	The Canvas
	Geolocation
	Forms
	Local Storage
	Audio and Video
	The <embed> Tag

	Microdata
	Web Workers
	Web Applications
	Still to Come
	Summary
	Self-Test Questions

	LESSON 9 Accessing the Canvas
	An Ultra-Crash Course in JavaScript
	Accessing Form Elements from JavaScript
	Using the getElementById() Function
	The Simpler O() Function
	The Partner S() Function

	The <canvas> Tag
	Accessing the Canvas with JavaScript
	Converting a Canvas to an Image

	Summary
	Self-Test Questions

	LESSON 10 Creating Rectangles, Fills, Gradients, and Patterns
	Drawing Rectangles
	The fillRect() Function
	The fillStyle Property
	The clearRect() Function
	The strokeRect() Function

	Creating Gradients
	The createLinearGradient() Function
	The createRadialGradient() Function
	The addColorStop() Function

	Using Patterns
	The createPattern() Function

	Summary
	Self-Test Questions

	LESSON 11 Writing Text to the Canvas
	Writing Text
	The font Property
	The strokeText() Function
	The textAlign Property
	The textBaseline Property
	The fillText() Function
	Determining Text Width

	Summary
	Self-Test Questions

	LESSON 12 Drawing Lines, Paths, and Curves
	Drawing Lines
	The lineWidth Property
	The lineCap Property
	The lineJoin Property
	The miterLimit Property

	Drawing with Paths
	The beginPath() and closePath() Functions
	The moveTo() and lineTo() Functions
	The stroke() Function
	The rect() Function
	The fill() Function
	The clip() Function
	The isPointInPath() Function

	Creating Curves
	The arc() Function
	The arcTo() Function
	The quadraticCurveTo() Function
	The bezierCurveTo() Function

	Summary
	Self-Test Questions

	LESSON 13 Manipulating Images, Shadows, and Pixels
	Using Images
	The drawImage() Function

	Adding Shadows
	Pixel Editing
	The getImageData() Function
	The data[] Array
	The putImageData() Function
	The createImageData() Function

	Summary
	Self-Test Questions

	LESSON 14 Compositing, Transparency, and Transformations
	Compositing and Transparency
	The globalCompositeOperation Property
	The globalAlpha Property

	Using Transformations
	The scale() Function
	The save() and restore() Functions
	The rotate() Function
	The translate() Function
	The transform() Function
	The setTransform() Function

	Summary
	Self-Test Questions

	PART III Advanced HTML
	LESSON 15 Supporting Geolocation
	Accessing Geolocation with JavaScript
	The geolocation Property
	The getCurrentPosition() Function
	In the Real World

	The GPS Service
	Other Location Methods

	Summary
	Self-Test Questions

	LESSON 16 Building Advanced Forms
	New Form Attributes
	The autocomplete Attribute
	The autofocus Attribute
	The form Attribute

	Form Overrides
	The formaction Attribute
	The formenctype Attribute
	The formmethod Attribute
	The formnovalidate Attribute
	The formtarget Attribute
	The height and width Attributes
	The list Attribute and <datalist> and <option> Tags
	The min and max Attributes
	The multiple Attribute
	The novalidate and formnovalidate Attributes
	The pattern Attribute
	The placeholder Attribute
	The required Attribute
	The step Attribute

	New Form Input Types
	The color Input Type

	Date and Time Pickers
	The date Input Type
	The month Input Type
	The time Input Type
	The week Input Type
	The datetime Input Type
	The datetime-local Input Type
	The email Input Type
	The number Input Type
	The range Input Type
	The search Input Type
	The tel Input Type
	The url Input Type

	Summary
	Self-Test Questions

	LESSON 17 Implementing Local Storage and Cross-Document Messaging
	Using Local Storage
	Storing and Retrieving Local Data
	Removing and Clearing Local Data

	Cross-Document Messaging
	Summary
	Self-Test Questions

	LESSON 18 Playing Audio
	Understanding Codecs
	The <audio> and <source> Tags
	The <audio> and <source> Tag Attributes
	Supporting Older Browsers

	Summary
	Self-Test Questions

	LESSON 19 Displaying Video
	The Video Codecs
	The <video> and <source> Tags
	The <video> and <source> Tag Attributes

	Summary
	Self-Test Questions

	LESSON 20 Working with Microdata, Web Workers, and Web Applications
	Microdata
	Web Workers
	Offline Web Applications
	Drag and Drop
	Other HTML5 Tags
	Summary
	Self-Test Questions

	APPENDIX Answers to the Self-Test Questions
	Lesson 1 Answers
	Lesson 2 Answers
	Lesson 3 Answers
	Lesson 4 Answers
	Lesson 5 Answers
	Lesson 6 Answers
	Lesson 7 Answers
	Lesson 8 Answers
	Lesson 9 Answers
	Lesson 10 Answers
	Lesson 11 Answers
	Lesson 12 Answers
	Lesson 13 Answers
	Lesson 14 Answers
	Lesson 15 Answers
	Lesson 16 Answers
	Lesson 17 Answers
	Lesson 18 Answers
	Lesson 19 Answers
	Lesson 20 Answers

	Index

